0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

研究人员利用量子计算机来模拟下一代锂硫电池

独爱72H 来源:盖世汽车网 作者:盖世汽车网 2020-03-12 17:20 次阅读

(文章来源:盖世汽车网)

据外媒报道,美国国际商用机器公司(IBM)和戴姆勒公司(Daimler AG)的研究人员,利用量子计算机,对三种含锂分子的偶极矩进行建模,并着眼于开发下一代锂硫电池。

锂硫电池在运行过程中可能形成分子,比如LiH、H2S、LiSH,以及所需的Li2S产品。研究人员模拟这些分子的基态能量和偶极矩。此外,他们还首次在量子硬件上演示,如何用IBM Q Valencia(高级访问5量子位量子计算机)中的4个量子位计算LiH的偶极矩。

IBM阿尔马登研究中心(IBM Almaden Research Center)的研究人员Jeannette Garcia指出,量子计算机的性能并不比传统计算机更优异。任何外界干扰都会使脆弱的量子位元过早脱离量子态,而量子态对于计算来说至关重要,因此无法进行有意义的计算。但是,它们已经在化学领域显示出巨大的潜力,可以精确模拟复杂的分子。在传统计算机上,这一过程既耗时又昂贵。

到目前为止,研究人员能够通过精确对角化(或FCI,完全组态相互作用计算),在标准计算机上模拟出的最大化学问题,大约包含22个电子和22个轨道,相当于并五苯分子中活跃空间的大小。作为参考,在大约4096个处理器上,对并五苯进行单次FCI迭代,大约需要1.17个小时,而一次完整的计算预计需要9天。

对于所有较大的化学问题来说,要进行精确的计算,将是一个异常缓慢和消耗内存的过程,因此需要在传统模拟过程中引入近似方案,因为传统模拟并不能保证所有化学问题的精确性和可承受性。值得一提的是,传统FCI方法所能达到的合理精确近似也在不断提高。这是一个活跃的研究领域,因此我们可以预期,传统FCI计算的准确近似度也将不断提升。

研究人员Jeannette Garcia表示:“这就是量子计算机的用武之地。与研究人员试图模拟的分子一样,量子位元本身根据量子力学定律运作。对于可以解释其行为(如反应性)的分子,我们希望量子计算机能够精确预测一种新分子的性质,大大加快仿真过程。研究人员利用叠加和量子纠缠的独特属性,为量子位元的工作原理编程,有可能以比标准计算机更有效的方式评估期望参数。“

戴姆勒的研究人员希望,他们能够利用量子计算机,进行下一代锂硫电池的设计,因为量子计算机具有精确计算和模拟基本行为的潜力。了解分子的电子云密度分布,特别是偶极矩,对于理解电池中发生的各种现象至关重要。通常情况下,高极性分子很容易吸引或排斥其他化合物的价电子,并通过电子转移产生反应,分子的偶极矩还决定了其对外部电场的响应。因此,精确计算分子的能量和偶极矩,是一个极具概念意义的问题,并且对LiS电池的化学具有重要适用性。要实现这一目标,需要解决有关分子的薛定谔方程,对于传统计算机来说,这是一个代价昂贵的命题,除非引入近似方案。

量子计算是解决数学问题的一种方式。与传统计算方式相比,它在量子化学等众多领域潜力更大。为了给薛定谔方程提供近似但高度精确的解法,人们提出了许多启发式方法,特别是可变量子本征求解(VQE)。IBM研究人员已经证明,VQE可用于多种分子研究,而且准确度高。

研究人员Rice等人表示:”在这些成功的激励下,以及考虑到计算能量和静电属性的重要性,在本项工作中,我们就确定LiH、H2S、LiSH和Li2S的基态能量和沿键拉伸的偶极矩,评估了量子算法的表现。“为了确保量子硬件计算准确,研究人员还在传统计算机上,利用IBM量子模拟器进行计算。然后,他们在IBM Q Valencia上运行这些计算,并对结果进行了比较。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子计算机
    +关注

    关注

    4

    文章

    531

    浏览量

    25476
  • 电池
    +关注

    关注

    84

    文章

    10627

    浏览量

    130302
收藏 人收藏

    评论

    相关推荐

    量子计算机与普通计算机工作原理的区别

      本文介绍了量子计算机与普通计算机工作原理的区别。 量子计算个新兴的
    的头像 发表于 11-24 11:00 366次阅读
    <b class='flag-5'>量子</b><b class='flag-5'>计算机</b>与普通<b class='flag-5'>计算机</b>工作原理的区别

    NVIDIA 助力谷歌量子 AI 通过量子器件物理学模拟加快处理器设计

    ,使用 NVIDIA CUDA-Q™ 平台进行模拟,加快下一代量子计算器件的设计工作。   谷歌量子 AI 正在使
    发表于 11-19 10:39 277次阅读
    NVIDIA 助力谷歌<b class='flag-5'>量子</b> AI 通过<b class='flag-5'>量子</b>器件物理学<b class='flag-5'>模拟</b>加快处理器设计

    利用AI构建实用量子计算应用

    在实践中构建实用量子计算机的难度极高,这需要大幅提高量子计算机的规模、保真度、速度、可靠性和可编程性,才能充分发挥其优势。另外,还需要功能强大的工具以解决许多阻碍实现实
    的头像 发表于 09-09 10:24 371次阅读
    <b class='flag-5'>利用</b>AI构建实<b class='flag-5'>用量子</b><b class='flag-5'>计算</b>应用

    【《计算》阅读体验】量子计算

    ,经典计算可以看作量子计算个特例,所有经典计算都可以在量子
    发表于 07-13 22:15

    研究人员利用定制光控制二维材料的量子特性

    光波控制谷值选择性带隙修正 个科学家团队开发出了利用光的结构扭曲和调整量子材料特性的方法。他们的
    的头像 发表于 05-06 06:29 263次阅读
    <b class='flag-5'>研究人员</b><b class='flag-5'>利用</b>定制光控制二维材料的<b class='flag-5'>量子</b>特性

    NVIDIA 推出云量子计算机模拟微服务

    —— 太平洋时间 2024 年 3 月 18 日 —— NVIDIA 于今日推出项云服务,旨在帮助研究人员和开发人员在化学、生物学、材料科学等关键科学领域的量子
    发表于 03-19 11:27 468次阅读
    NVIDIA 推出云<b class='flag-5'>量子</b><b class='flag-5'>计算机</b><b class='flag-5'>模拟</b>微服务

    量子计算机重构未来 | 阅读体验】 跟我起漫步量子计算

    的干扰,保持量子比特的稳定性是个巨大的技术难题。此外,量子编程和算法的发展也还处于初级阶段,需要更多的研究和探索。 尽管面临挑战,但量子
    发表于 03-13 19:28

    量子

    当我们谈论量子计算机时,通常是在讨论利用量子力学原理进行计算的全新计算机系统。与传统的
    发表于 03-13 18:18

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    中的处理器(CPU)就是由许多逻辑门电路组成的。 量子计算机与电子计算机最大的区别在于它们使用量子比特(qubit)而不是电子比特(bit)
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】+量子计算机的原理究竟是什么以及有哪些应用

    计算机主要是利用量子的叠加态和量子纠缠的特性实现计算和信息传递。量子叠加使得
    发表于 03-11 12:50

    量子计算机重构未来 | 阅读体验】第二章关键知识点

    ,Snor算法和Grover算法。Snor算法典型的应用场景为超大数的质因数分解,普通计算机需要通过一个一个的枚举才能解析出来,但量子计算机可以同时对多个候选结果进行“
    发表于 03-06 23:17

    量子计算机重构未来 | 阅读体验】+ 初识量子计算机

    感觉量子技术神奇神秘,希望通过阅读此书认识量子计算机。 先浏览下目录: 通过目录,基本可以确定这是
    发表于 03-05 17:37

    量子计算机的未来

    了解量子计算机对于工业生产和产品研发的使用
    发表于 02-01 15:30

    量子计算机 未来希望

    自己从事语音识别产品设计开发,而量子技术和量子计算机必将在自然语言处理方面实现重大突破,想通过此书学习量子计算技术,储备知识,谢谢!
    发表于 02-01 12:51

    名单公布!【书籍评测活动NO.28】量子计算机重构未来

    计算机呢? 我每天都在持续开展有助于推广这种研究成果的活动。本书从研究人员的角度出发,在量子计算机的技术、应用、今后的展望这些方面进行了全面
    发表于 01-26 14:00