0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

开源机器学习平台TensorFlow的更新内容

汽车玩家 来源:开源中国 作者:xplanet 2020-03-15 14:53 次阅读

TensorFlow 2.2.0-rc0已发布,据官方介绍,TensorFlow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。

更新内容如下:

主要特性和改进

将字符串张量的标量类型从std::string替换为tensorflow::tstring

TF 2 的新 Profiler,用于 CPU/GPU/TPU。它提供设备和主机性能分析,包括输入管道和 TF Ops。

推荐使用 SWIG,而是使用 pybind11 将 C++ 函数导出到 Python,这是弃用 Swig 所作努力的一部分。

tf.distribute:

tf.keras:

tf.lite:

XLA

将 NVIDIA NCCL 更新到 2.5.7-1,以获得更好的性能和性能调整。

支持在 float16 中减少梯度。

所有实验的支持都减少了梯度压缩,以允许使用反向路径计算进行重叠梯度聚合

通过使用新添加的 tf.keras.layers.experimental.SyncBatchNormalization 层,添加了对全局同步 BatchNormalization 的支持。该层将在参与同步训练的所有副本之间同步 BatchNormalization 统计信息

使用 tf.distribute.experimental.MultiWorkerMirroredStrategy 提高 GPU 多工分布式培训的性能

可以通过覆盖 Model.train_step 将自定义训练逻辑与 Model.fit 结合使用。

轻松编写最新的培训循环,而不必担心 Model.fit 为你处理的所有功能(分发策略,回调,数据格式,循环逻辑等)

Model.fit的主要改进:

现在,SavedModel 格式支持所有 Keras 内置层(包括指标,预处理层和有状态 RNN 层)

默认情况下启用 TFLite 实验性新转换器。

XLA 现在可以在 Windows 上构建并运行。所有预构建的软件包都随附有 XLA。

可以在 CPU 和 GPU 上使用“编译或抛出异常”语义为 tf.function 启用 XLA。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8375

    浏览量

    132397
  • tensorflow
    +关注

    关注

    13

    文章

    328

    浏览量

    60494
收藏 人收藏

    评论

    相关推荐

    NPU与机器学习算法的关系

    紧密。 NPU的起源与特点 NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)项目中提出,旨在为TensorFlow框架提供专用的硬件加速。NPU的设计目标是提高机器学习算法的运行效率,特别是在处理
    的头像 发表于 11-15 09:19 279次阅读

    使用机器学习和NVIDIA Jetson边缘AI和机器人平台打造机器人导盲犬

    Selin Alara Ornek 是一名富有远见的高中生。她使用机器学习和 NVIDIA Jetson 边缘 AI 和机器人平台,为视障人士打造了机器人导盲犬。 该项目名为 I
    的头像 发表于 11-08 10:05 297次阅读

    TensorFlow是什么?TensorFlow怎么用?

    TensorFlow是由Google开发的一个开源深度学习框架,它允许开发者方便地构建、训练和部署各种复杂的机器学习模型。
    的头像 发表于 07-12 16:38 568次阅读

    使用TensorFlow进行神经网络模型更新

    使用TensorFlow进行神经网络模型的更新是一个涉及多个步骤的过程,包括模型定义、训练、评估以及根据新数据或需求进行模型微调(Fine-tuning)或重新训练。下面我将详细阐述这个过程,并附上相应的TensorFlow代码
    的头像 发表于 07-12 11:51 342次阅读

    tensorflow和pytorch哪个更简单?

    TensorFlow和PyTorch都是用于深度学习机器学习开源框架。TensorFlow
    的头像 发表于 07-05 09:45 772次阅读

    tensorflow和pytorch哪个好

    :2015年由Google Brain团队发布。 语言支持 :主要使用Python,也支持C++、Java等。 设计哲学 :TensorFlow是一个端到端的机器学习平台,支持从研究
    的头像 发表于 07-05 09:42 625次阅读

    tensorflow简单的模型训练

    在本文中,我们将详细介绍如何使用TensorFlow进行简单的模型训练。TensorFlow是一个开源机器学习库,广泛用于各种
    的头像 发表于 07-05 09:38 501次阅读

    keras模型转tensorflow session

    和训练深度学习模型。Keras是基于TensorFlow、Theano或CNTK等底层计算框架构建的。TensorFlow是一个开源机器
    的头像 发表于 07-05 09:36 456次阅读

    如何使用Tensorflow保存或加载模型

    TensorFlow是一个广泛使用的开源机器学习库,它提供了丰富的API来构建和训练各种深度学习模型。在模型训练完成后,保存模型以便将来使用
    的头像 发表于 07-04 13:07 1294次阅读

    TensorFlow的定义和使用方法

    TensorFlow是一个由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护的开源机器学习库。它基于数据流编程(dataflow programming)的概念,将复杂的
    的头像 发表于 07-02 14:14 672次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的一个重要分支,在过去十年中取得了显著的进展。在构建和训练深度学习模型的过程中,深度学习框架扮演着至关重要的角色。TensorFlow和PyTorch是目前最受
    的头像 发表于 07-02 14:04 883次阅读

    英飞凌旗下Imagimob更新Studio平台,引入全新Graph UX界面

    英飞凌科技旗下领先的边缘设备AI/ML开发平台提供商Imagimob,近日对其旗舰产品Imagimob Studio进行了重大更新。此次更新引入了全新的Graph UX界面,使得机器
    的头像 发表于 03-12 10:04 672次阅读

    谷歌模型框架是什么软件?谷歌模型框架怎么用?

    谷歌模型框架通常指的是谷歌开发的用于机器学习和人工智能的软件框架,其中最著名的是TensorFlowTensorFlow是一个开源
    的头像 发表于 03-01 16:25 794次阅读

    基于TensorFlow和Keras的图像识别

    TensorFlow和Keras最常见的用途之一是图像识别/分类。通过本文,您将了解如何使用Keras达到这一目的。定义如果您不了解图像识别的基本概念,将很难完全理解本文的内容。因此在正文开始之前
    的头像 发表于 01-13 08:27 768次阅读
    基于<b class='flag-5'>TensorFlow</b>和Keras的图像识别

    如何使用TensorFlow构建机器学习模型

    在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建一个简单的机器学习模型。
    的头像 发表于 01-08 09:25 907次阅读
    如何使用<b class='flag-5'>TensorFlow</b>构建<b class='flag-5'>机器</b><b class='flag-5'>学习</b>模型