0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

极紫外光刻机想要突破3纳米,需要开发全新的材料

独爱72H 来源:DeepTech 作者:DeepTech 2020-03-19 16:32 次阅读

(文章来源:DeepTech)

台积电即将量产全球最先进的 5nm 工艺技术,在摩尔定律看似顺遂推进下,材料技术发展的重重阻碍却在台面下暗潮汹涌。2019 年于美国硅谷登场的一场半导体光刻技术研讨会中,业界就提出半导体工艺蓝图虽然在未来 10 年可以一路推进至 1nm,却可能因光刻胶材料的瓶颈,让工艺发展到 3nm 节点时就出现警讯。

这揭示着要延续摩尔定律的生命,需要整个半导体产业链中的材料、设备、制造等各个细分领域齐心协力,像是游戏闯关般解开一道道技术难题,才能顺利往目的地前进。业界指出,透过极紫外光 EUV 正式迈入商用化,台积电和三星都已成功将 EUV 技术导入 7nm 并开始量产,但业界仍是看到一些技术和材料上的隐忧,其中一个巨大的挑战,就是进入 3nm 工艺,需要成本降低,分辨率更高的 EUV 光刻胶技术。

光刻技术的发展历程中,在初期,半导体大厂也是利用 193nm 沉浸式光刻和多重曝光,将工艺推展至 10nm 和 7nm,但是实现特定图形变得越来越困难,并且多重曝光也带来了生产成本的上升。在引入 EUV 光刻技术后,EUV 所扮演的角色是 7nm 逻辑工艺的关键光刻层。在芯片制造商引入前,EUV 是由光刻机、光源、光刻胶和光掩膜所组成。

过往 EUV 技术的临界多在光源,因为光源的功率不足,会影响芯片的生产效率,这也是过去多年以来 EUV 技术一直在推迟量产的原因。ASML 花了很多时间解决光源的问题,也在 2013 年收购美国光源制造商 Cymer。目前 ASML 的光源功率可以达到 250w,在此功率下,客户可以达到每小时 155 片晶圆吞吐量; 在实验室里,则是可以实现超过 300w 的光源功率。

光源问题解决后,EUV 技术被提出最多的挑战即是光刻胶技术的限制。虽然半导体材料的供应都十分集中,但光刻胶技术应该算是全球集中度最高,且壁垒最高的材料,日本和美国合计占市场份额高达 95%。

在 248nm 和 193nm 的光刻中,主流有超过 20 年之久都是使用有机化学放大光刻胶 CAR,这是一种用来制作图案成形的光敏聚合物。在 EUV 技术下,光子撞击 CAR 光刻胶并产生光酸,之后 CAR 光刻胶在曝光后的过程中进行光酸催化反应,进而产生光刻图案。不过,当 CAR 光刻胶用于 EUV 上,因为光源能量大幅增加,可能会出现不同且复杂的结果,进而影响芯片良率。

因此,半导体设备、材料商都想尽各种方式,或者提出新的光刻胶技术解决方案,让 EUV 技术可以持续使用,延续摩尔定律的寿命。近几年不同的新 EUV 光刻胶技术陆续问世,例如也是液态式的金属氧化物光刻胶,或是干式的光刻胶等,在整个半导体产业链生态中,这是一次材料革新带来的巨大商机。

美国有一家材料商 Inpria 就很积极投入 EUV 光刻胶技术,这是一家 2007 年从俄勒冈州立大学化学研究所独立出来的公司,传出之后获得许多半导体公司如三星、英特尔等投资。Inpria 是研发负性光刻胶,其分子大小是 CAR 有机光刻胶的 5 分之 1,重点是光吸收率可达 CAR 的 45 倍,因此能更精密、更准确地让电路图形成形。

主要是因为,2019 年日本对韩国进行 EUV 光刻胶的出口管制,让韩国的半导体公司为了寻找替代和创新的解决方案的态度比其他半导体大厂是更加积极。根据估计,韩国半导体有 90% 以上的光刻胶技术是仰赖日本供应,EUV 光刻胶也同样是高度仰赖日商。

三星和台积电是全球迁移引入 EUV 工艺的两大半导体厂,双方从 7nm 一路缠斗至今,台积电都是一路领先,未来要决胜 3nm 工艺节点,三星必须要在材料上有完全把握,才能再次一宣战。根据调研机构 IC Insights 统计,尺寸小于 10 nm 的半导体产量将从 2019 年的每月 105 万片晶圆,增加到 2023 年每月 627 万片,且未来几年内 EUV 将主导 7nm 以下的大部分工艺技术。

7nm 以下先进工艺的产能大增,也代表整个业界对于新的 EUV 光刻胶技术,以及不同来源的材料需求更为迫切。近期还有一种新的 EUV 光刻胶技术,也备受关注,由 Lam Research 和光刻机龙头 ASML 、比利时微电子中心 imec 联手研发,提出了一种全新的 EUV 干式光刻胶技术,目的是取代传统的 CAR 光刻胶,这对于半导体工艺的演进,可能会是一个巨大的突破。

问芯Voice特别专访 Lam Research 执行副总裁兼首席技术官 Rick Gottscho。他表示,这个新技术的优势在于提升 EUV 的敏锐度和分辨率,更可以减少原本 510 倍的光刻胶使用量,在成本节约上带来显著成果。在当今业界以有机化学放大光刻胶 CAR 和无机光刻胶 n-CAR 为主下,都是采用液态光刻胶技术,只有 LAM Research 提出的新型 EUV 光刻胶技术是基于干式沉积的技术。

Gottscho 表示,目前主流的光刻胶技术是 CAR ,是将液态光刻胶搭配涂布机Track设备旋涂到晶圆上,在使用溶剂曝光后去除。Lam Research 开发出来的新式干式光刻胶技术,是有别于传统液态光刻胶的涂布方式,改在腔体中进行化学反应,让干式光刻胶在化学气相沉积(CVD)或原子层沉积(ALD)中制造,之后再以刻蚀工艺去除。

这样的 EUV 干式光刻胶的优点在于提升成像的敏感度、分辨率和 EUV 曝光的分辨率。更重要的是,由此新技术改善每片 EUV 工艺晶圆的成本。因为 EUV 设备正被全球半导体大厂引入大量生产中,促使推动半导体技术进入更先进的工艺。

Gottscho 强调,Lam Research 的干式光刻胶技术可以使用更低剂量的光刻胶,几乎是减少 5~10 倍的使用量,就达到更高分辨率,并扩大 process window,EUV 可以更为精准地刻画电路图形,同时为客户节省运营成本。LAM Research 与 ASML,imec 的跨界技术结盟合作是历史久远。

荷兰设备大厂 ASML 是 EUV 光刻技术的龙头,LAM Research 的优势在于刻蚀和沉积工艺,imec 则是长期专注于研发技术的创新,三方合作有信心可以突破常规传统,发展出创新的技术,以延展 EUV 技术到更为先进的工艺例程上。半导体业者则分析,传统的 CAR 光刻胶技术大概从 1980 年代的 248nm 曝光机就开始用了,主要的光刻胶涂布机供应商以日商为首的东电电子 TEL。

因此,这次 Lam Research 与 ASML 和 imec 研究出来的 EUV 干式光刻胶技术,可能与日本设备材料厂商形成两个阵营,冲破既有的半导体技术规则,为产业带来深远的改变。根据调研机构芯思想研究院(ChipInsights)统计,2019 年全球半导体设备商前 10 强(不含服务收入和部分材料)中,Lam Research 位居第四名,仅次于应用材料、ASML、东电电子 TEL。

Lam Research 的长板在于前端晶圆处理技术,包括薄膜沉积、等离子刻蚀、光阻去除、芯片清洗等前道工艺方案、后道晶圆级封装(WLP)等。三大核心产品分别为刻蚀设备、沉积设备,以及去光阻和清洗设备。国内也有半导体光刻胶的供应商,只是现有技术和市场份额距离国际水平仍非常远,比较为人所知的五家光刻胶供应商为北京科华、晶瑞、南大光电、容大感光、上海新阳等。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 纳米技术
    +关注

    关注

    2

    文章

    201

    浏览量

    25783
  • 光刻机
    +关注

    关注

    31

    文章

    1142

    浏览量

    47152
收藏 人收藏

    评论

    相关推荐

    纳米压印光刻技术应用在即,能否掀起芯片制造革命?

    压印光刻技术NIL在这条赛道上备受关注,是最有机会率先应用落地的技术路线。   今年早些时候,根据英国金融时报的报道,负责监督新型光刻机开发的佳能高管武石洋明在接受采访时称,采用纳米
    的头像 发表于 03-09 00:15 3975次阅读
    <b class='flag-5'>纳米</b>压印<b class='flag-5'>光刻</b>技术应用在即,能否掀起芯片制造革命?

    紫外光源的分类

    自然界中存在多种紫外光谱,人工紫外光源包括气体放电、超高温辐射体和半导体光源。常用紫外光源有高压汞灯、氙灯、氪灯、氘灯、紫外LED和准分子激光器等,各有特定波长、工作电压和光功率。
    的头像 发表于 10-25 14:10 80次阅读

    日本大学研发出新紫外(EUV)光刻技术

    近日,日本冲绳科学技术大学院大学(OIST)发布了一项重大研究报告,宣布该校成功研发出一种突破性的紫外(EUV)光刻技术。这一创新技术超越了当前半导体制造业的标准界限,其设计的
    的头像 发表于 08-03 12:45 812次阅读

    俄罗斯首台光刻机问世

    的一部分,目前正在对其进行测试,该设备可确保生产350nm的芯片。什帕克还指出,到2026年将获得130nm的国产光刻机,下一步将是开发90nm光刻机,并继续向下迈进。 此前,俄罗斯曾表示,计划到2026年实现65nm的芯片节点
    的头像 发表于 05-28 15:47 679次阅读

    买台积电都嫌贵的光刻机,大力推玻璃基板,英特尔代工的野心和危机

    电子发烧友网报道(文/吴子鹏)此前,台积电高级副总裁张晓强在技术研讨会上表示,“ASML最新的高数值孔径紫外光刻机(high-NA EUV)价格实在太高了,台积电目前的紫外设备(E
    的头像 发表于 05-27 07:54 2422次阅读

    后门!ASML可远程锁光刻机

    来源:国芯网,谢谢 编辑:感知芯视界 Link 5月22日消息,据外媒报道,台积电从ASML购买的EUV紫外光刻机,暗藏后门,可以在必要的时候执行远程锁定! 据《联合早报》报道,荷兰方面在
    的头像 发表于 05-24 09:35 482次阅读

    荷兰阿斯麦称可远程瘫痪台积电光刻机

    disable)台积电相应机器,而且还可以包括最先进的紫外光刻机(EUV)。 这就意味着阿斯麦(ASML)留了后门,随时有能力去远程瘫痪制造芯片的光刻机。 要知道我国大陆市场已经连续三个季度成为阿斯麦(ASML)最大市场,而
    的头像 发表于 05-22 11:29 5703次阅读

    台积电未确定是否采购阿斯麦高数值孔径紫外光刻机

    尽管High NA EUV光刻机有望使芯片设计尺寸缩减达三分之二,但芯片制造商需要权衡利弊,考虑其高昂的成本及ASML老款设备的可靠性问题。
    的头像 发表于 05-15 09:34 372次阅读

    光刻机的基本原理和核心技术

    虽然DUVL机器可以通过多重曝光技术将线宽缩小到7-5纳米,但如果要获得更小的线宽,DUVL已经达到了极限。采用EUV作为光源的紫外光刻(EUVL)成为研究的重点,其波长为13.5纳米
    发表于 04-25 10:06 2977次阅读
    <b class='flag-5'>光刻机</b>的基本原理和核心技术

    光刻机的发展历程及工艺流程

    光刻机经历了5代产品发展,每次改进和创新都显著提升了光刻机所能实现的最小工艺节点。按照使用光源依次从g-line、i-line发展到KrF、ArF和EUV;按照工作原理依次从接触接近式光刻机发展到浸没步进式投影
    发表于 03-21 11:31 5562次阅读
    <b class='flag-5'>光刻机</b>的发展历程及工艺流程

    ASML 首台新款 EUV 光刻机 Twinscan NXE:3800E 完成安装

    EUV 光刻机持续更新升级,未来目标在 2025 年推出 NXE:4000F 机型。 上两代 NXE 系列机型 3400C 和 3600D 分别适合 7~5、5~3 纳米节点生产,德媒 ComputerBase 因此预测 38
    的头像 发表于 03-14 08:42 494次阅读
    ASML 首台新款 EUV <b class='flag-5'>光刻机</b> Twinscan NXE:3800E 完成安装

    光刻机巨头ASML要搬离荷兰?

    据荷兰《电讯报》3月6日报道,因荷兰政府的反移民政策倾向,光刻机巨头阿斯麦(ASML)正计划搬离荷兰。
    的头像 发表于 03-08 14:02 1087次阅读

    光刻胶和光刻机的区别

    光刻胶是一种涂覆在半导体器件表面的特殊液体材料,可以通过光刻机上的模板或掩模来进行曝光。
    的头像 发表于 03-04 17:19 3955次阅读

    佳能预计到2024年出货纳米压印光刻机

    Takeishi向英国《金融时报》表示,公司计划于2024年开始出货其纳米压印光刻机FPA-1200NZ2C,并补充说芯片可以轻松以低成本制造。2023年11月,该公司表示该设备的价格将比ASML的EUV机器便宜一位数。 佳能表示,与利用光曝光电路图案的传统
    的头像 发表于 02-01 15:42 830次阅读
    佳能预计到2024年出货<b class='flag-5'>纳米</b>压印<b class='flag-5'>光刻机</b>

    光刻机结构及IC制造工艺工作原理

    光刻机是微电子制造的关键设备,广泛应用于集成电路、平面显示器、LED、MEMS等领域。在集成电路制造中,光刻机被用于制造芯片上的电路图案。
    发表于 01-29 09:37 2450次阅读
    <b class='flag-5'>光刻机</b>结构及IC制造工艺工作原理