0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Explainable AI旨在提高机器学习模型的可解释性

倩倩 来源:互联网分析沙龙 2020-03-24 15:14 次阅读

Google LLC 在其云平台上推出了一项新的“ 可解释AI ”服务,旨在使机器学习模型做出决策的过程更加透明。

谷歌表示,这样做的想法是,这将有助于建立对这些模型的更大信任。这很重要,因为大多数现有模型往往相当不透明。只是不清楚他们如何做出决定。

Google Cloud AI战略总监Tracy Frey在 今天的博客中解释说,Explainable AI旨在提高机器学习模型的可解释性。她说,这项新服务的工作原理是量化每个数据因素对模型产生的结果的贡献,帮助用户了解其做出决定的原因。

换句话说,它不会以通俗易懂的方式来解释事物,但是该分析对于首先构建机器学习模型的数据科学家和开发人员仍然有用。

可解释的AI有进一步的局限性,因为它提出的任何解释都将取决于机器学习模型的性质以及用于训练它的数据。

她写道:“任何解释方法都有局限性。” “一方面,AI解释反映了数据中发现的模型的模式,但它们并未揭示数据样本,总体或应用程序中的任何基本关系。我们正在努力为客户提供最直接,最有用的解释方法,同时保持其局限性透明。”

但是,可解释的AI可能很重要,因为准确解释特定机器学习模型为何得出结论的原因对于组织内的高级管理人员很有用,他们最终负责这些决策。对于高度严格的行业来说,这尤其重要,而信心绝对至关重要。谷歌表示,对于处于这一位置的许多组织而言,目前没有任何可解释性的人工智能已经超出范围。

在相关新闻中,Google还发布了所谓的“模型卡”,作为其Cloud Vision应用程序编程界面的面部检测和对象检测功能的文档。

这些模型卡详细说明了这些预先训练的机器学习模型的性能特征,并提供了有关其性能和限制的实用信息。谷歌表示,其目的是帮助开发人员就使用哪种模型以及如何负责任地部署它们做出更明智的决定。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6161

    浏览量

    105300
  • 机器学习
    +关注

    关注

    66

    文章

    8406

    浏览量

    132563
收藏 人收藏

    评论

    相关推荐

    深度学习模型的鲁棒优化

    深度学习模型的鲁棒优化是一个复杂但至关重要的任务,它涉及多个方面的技术和策略。以下是一些关键的优化方法: 一、数据预处理与增强 数据清洗 :去除数据中的噪声和异常值,这是提高
    的头像 发表于 11-11 10:25 221次阅读

    常见AI模型的比较与选择指南

    在选择AI模型时,明确具体需求、了解模型的训练数据、计算资源要求和成本,并考虑模型可解释性和社区支持情况等因素至关重要。以下是对常见
    的头像 发表于 10-23 15:36 714次阅读

    AI模型与深度学习的关系

    人类的学习过程,实现对复杂数据的学习和识别。AI模型则是指模型的参数数量巨大,需要庞大的计算资源来进行训练和推理。深度
    的头像 发表于 10-23 15:25 649次阅读

    AI模型与传统机器学习的区别

    AI模型与传统机器学习在多个方面存在显著的区别。以下是对这些区别的介绍: 一、模型规模与复杂度 AI
    的头像 发表于 10-23 15:01 550次阅读

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    。 4. 物理与AI的融合 在阅读过程中,我对于物理与AI的融合有了更加深入的认识。AI for Science不仅依赖于数据,还需要结合物理定律和原理来确保模型的准确
    发表于 10-14 09:16

    RISC-V如何支持不同的AI机器学习框架和库?

    RISC-V如何支持不同的AI机器学习框架和库?还请坛友们多多指教一下。
    发表于 10-10 22:24

    AI引擎机器学习阵列指南

    AMD Versal AI Core 系列和 Versal AI Edge 系列旨在凭借 AI 引擎机器
    的头像 发表于 09-18 09:16 387次阅读
    <b class='flag-5'>AI</b>引擎<b class='flag-5'>机器</b><b class='flag-5'>学习</b>阵列指南

    Al大模型机器

    和迭代来不断改进自身性能。它们可以从用户交互中学习并根据反馈进行调整,以提高对话质量和准确。可定制与整合:
    发表于 07-05 08:52

    【大规模语言模型:从理论到实践】- 阅读体验

    直观地解释和理解。这可能会影响模型可解释性和可信赖,特别是在需要高度可靠的场景中。 通过修改注意力机制的计算方式或引入新的架构来降低
    发表于 06-07 14:44

    【大语言模型:原理与工程实践】核心技术综述

    中应用,需要考虑到性能、可扩展性和安全等因素。 大语言模型正在快速发展,新技术不断涌现。未来的研究可能集中在提高模型效率、理解和可解释性
    发表于 05-05 10:56

    Meta发布SceneScript视觉模型,高效构建室内3D模型

    Meta 表示,此模型具备创建室内 3D 模型的高效与轻便,仅需几KB内存便能生成完整清晰的几何图形,同时,这些形状数据具备可解释性,便于用户理解和编辑。
    的头像 发表于 03-26 11:16 573次阅读

    AI算法在矿山智能化中的应用全解析

    调度、强化学习、异常检测和诊断以及数据融合和信息集成等方面。此外,还需关注数据基础设施、系统集成、网络安全、人工智能伦理和可解释性等问题。通过整合这些技术和方法,矿山企业可以提高生产效率、降低风险、减少成本,实现可持续发展。
    的头像 发表于 03-20 10:59 658次阅读
    <b class='flag-5'>AI</b>算法在矿山智能化中的应用全解析

    爱立信推出认知软件新功能

    日前,爱立信宣布在其专为运营商设计的认知软件组合中,新增采用“可解释性人工智能(Explainable AI,XAI)”的新功能,进一步加速在网络设计和优化中采用人工智能后的价值转化。
    的头像 发表于 02-22 09:22 5240次阅读

    什么是机器学习?它的重要体现在哪

    机器学习是一种人工智能(AI)的子领域,旨在使计算机系统通过经验自动学习和改进,而无需明确地进行编程。它侧重于开发算法和
    的头像 发表于 01-05 08:27 1573次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?它的重要<b class='flag-5'>性</b>体现在哪

    华为云AI峰会揭示大模型实践难题

    除此之外,还存在行业训练数据安全控制、大模型幻觉缓解消除及可解释性、构建具有强大逻辑推理规划能力的大模型、基于图数据的知识增强技术、通用结构化数据特性对齐和预训练,以及视觉领域下一个token预测任务建模等挑战。
    的头像 发表于 12-25 10:33 794次阅读