0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

2020年AI和机器学习的重要趋势是什么?

倩倩 来源:CDA数据分析师 2020-03-25 15:45 次阅读

在竞争日益激烈的技术市场中,从高科技初创公司到全球跨国公司都将人工智能视为关键竞争优势。

但是,人工智能行业发展如此之快,以至于很难跟踪最新的研究突破和成就,甚至很难应用科学成果来实现业务成果。

在2020年为了帮助业务制定强大的AI策略,本文总结了不同研究领域的最新趋势,包括自然语言处理,对话式AI,计算机视觉和强化学习。

自然语言处理

在2018年,经过预训练的语言模型突破了自然语言理解和生成的极限。这些也主导了去年自然语言处理的进展。

如果是NLP开发的新手,那么经过预先训练的语言模型可以使NLP的实际应用大大便捷,更快,更容易,因为它们允许在一个大型数据集上进行NLP模型的预先训练,然后快速对其进行微调以适应其他NLP任务。

来自顶级研究机构和科技公司的团队探索了使最先进的语言模型更加复杂的方法。计算能力的大幅度提高推动了许多改进,但是许多研究小组还发现了更精巧的方法来减轻模型并保持高性能。

目前的研究趋势如下:

· 新的NLP范例是“预训练+微调”。在过去的两年中,转移学习主导了NLP研究。ULMFiT,CoVe,ELMo,OpenAI GPT,BERT,OpenAI GPT-2,XLNet,RoBERTa,ALBERT –这是最近介绍的重要的预训练语言模型的详尽列表。尽管转移学习无疑将NLP推向了新的高度,但由于要求大量的计算成本和庞大的带注释数据集所以它经常会受到批评。

· 语言学和知识可能会提高NLP模型的性能。专家认为,语言学可以通过改善数据驱动方法的可解释性来促进深度学习。利用上下文和人类知识可以进一步提高NLP系统的性能。

· 神经机器翻译展示了可见的进步。同步机器翻译已经可以在现实世界中应用。最近的研究旨在突破通过优化神经网络体系结构,利用视觉上下文以及为无监督和半监督机器翻译引入新颖的方法来进一步提高翻译质量。

对话式AI

会话式AI已成为跨行业业务实践的组成部分。越来越多的公司正在利用聊天机器人为客户服务,为销售和营销带来的优势。

即使聊天机器人已成为领先企业的“必备”资产,但其性能仍然与人类相去甚远。来自主要研究机构和技术领导者的研究人员已经探索了提高对话系统性能的方法:

· 对话系统正在改进跟踪对话的长期性。去年发表的许多研究论文的目标是,通过更好地利用对话历史和上下文,提高系统理解对话过程中引入的复杂关系的能力。

· 许多研究团队正在解决机器生成响应的多样性。当前,现实世界中的聊天机器人通常会产生无聊且重复的响应。去年,引入了几篇优秀的研究 论文,旨在产生多样化而又相关的回应。

· 情感识别被视为开放域聊天机器人的重要功能。因此,研究人员正在研究将同理心纳入对话系统的最佳方法。该研究领域的成就仍然很小,但是在情感识别方面的巨大进步可以显着提高社交机器人的性能和受欢迎程度,并且还可以增加聊天机器人在心理治疗中的使用。

计算机视觉

在过去的几年中,计算机视觉(CV)系统通过在医疗保健,安全,运输,零售,银行,农业等领域的成功应用,彻底改变了整个行业和业务功能。

最近引入的体系结构和方法(例如EfficientNet和SinGAN)进一步提高了视觉系统的感知能力和生成能力。

以下是计算机视觉中流行的研究主题:

· 3D目前是CV领域的领先研究领域之一。今年,我们看到了几篇有趣的研究论文,旨在从2D投影重建3D世界。Google研究小组采用了一种新颖的方法来生成整个自然场景的深度图。Facebook AI团队提出了一种有趣的点云3D对象检测解决方案。

· 无监督学习方法的普及正在增长。例如,斯坦福大学的一个研究小组介绍了一种有前途的局部聚合方法,可以在无监督学习的情况下进行对象检测和识别。在另一篇出色的论文中,该论文获得了ICCV 2019最佳论文奖的提名,该论文采用无监督学习来计算3D形状之间的对应关系。

· 计算机视觉研究已与NLP成功结合。最新的研究进展使自然语言中的两个图像之间具有强大的更改字幕,3D环境中的视觉语言导航以及学习分层视觉语言表示的能力,从而可以更好地检索图像字幕和视觉基础。

强化学习

强化学习(RL)对于业务应用程序而言,其价值仍然比有监督的学习甚至无监督的学习低。它仅在可生成大量模拟数据的区域(例如机器人技术和游戏)中成功应用。

但是,许多专家认为RL是通向人工智能(AGI)或真正智能的有前途的途径。因此,来自顶级机构和技术领导者的研究团队正在寻找使RL算法更加高效和稳定的方法。强化学习中的热门研究主题包括:

· 多主体强化学习(MARL)正在迅速发展。OpenAI团队最近展示了模拟捉迷藏环境中的代理如何建立研究人员不知道其环境支持的策略。另一篇出色的论文在ICML 2019 上获得了荣誉奖,以调查如果有相应的动机,多个代理如何相互影响。

· 非政策评估和非政策学习对于未来的RL应用非常重要。该研究领域的最新突破包括在多种约束下用于处理策略学习的新解决方案,将参数模型和非参数模型相结合以及引入了一类新的非策略算法来迫使代理人采取接近策略的方式。

· 勘探是可以取得重大进展的领域。在ICML 2019上发表的论文介绍了具有分布RL,最大熵探索和安全条件的新型有效探索方法,以应对强化学习中的桥梁效应。

这是有关NLP,对话式AI,计算机视觉和强化学习等最受欢迎的子主题---新AI和机器学习研究趋势的概述 ,其中很多都对对业务都、有影响。

预计2020年应用人工智能领域将有更多突破,这些突破将基于2019年在机器学习方面取得的显着技术进步。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    47059

    浏览量

    238050
  • 计算机视觉
    +关注

    关注

    8

    文章

    1696

    浏览量

    45959
  • 自然语言处理

    关注

    1

    文章

    618

    浏览量

    13541
收藏 人收藏

    评论

    相关推荐

    【书籍评测活动NO.51】具身智能机器人系统 | 了解AI的下一个浪潮!

    早就听大佬们说,具身智能是人工智能的下一波浪潮,也是AI未来的趋势! 最近,具身智能的概念更是炙手可热,备受瞩目! 不论是这几天稚晖君开源人形机器人全套图纸+代码,引发圈内热议。 还是各类具身智能
    发表于 11-11 10:20

    AI干货补给站 | 深度学习机器视觉的融合探索

    在智能制造的浪潮中,阿丘科技作为业界领先的工业AI视觉平台及解决方案提供商,始终致力于推动AI+机器视觉技术的革新与应用。为此,我们特别开设了「AI干货补给站」专栏,分享此领域的基础知
    的头像 发表于 10-29 08:04 212次阅读
    <b class='flag-5'>AI</b>干货补给站 | 深度<b class='flag-5'>学习</b>与<b class='flag-5'>机器</b>视觉的融合探索

    机器人技术的发展趋势

    机器人技术的发展趋势呈现出多元化、智能化和广泛应用的特点。 一、智能化与自主化 人工智能(AI)与机器学习
    的头像 发表于 10-25 09:27 688次阅读

    人工智能、机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2473次阅读
    人工智能、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习AI大模型的基础 技术支撑 :深度学习
    的头像 发表于 10-23 15:25 545次阅读

    AI大模型与传统机器学习的区别

    AI大模型与传统机器学习在多个方面存在显著的区别。以下是对这些区别的介绍: 一、模型规模与复杂度 AI大模型 :通常包含数十亿甚至数万亿的参数,模型大小可以达到数百GB甚至更大。这些模
    的头像 发表于 10-23 15:01 472次阅读

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络等。这些技术构成了AI for Science的基石,使得AI能够处理和分析
    发表于 10-14 09:16

    RISC-V如何支持不同的AI机器学习框架和库?

    RISC-V如何支持不同的AI机器学习框架和库?还请坛友们多多指教一下。
    发表于 10-10 22:24

    AI引擎机器学习阵列指南

    AMD Versal AI Core 系列和 Versal AI Edge 系列旨在凭借 AI 引擎机器学习 ( ML ) 架构来提供突破性
    的头像 发表于 09-18 09:16 365次阅读
    <b class='flag-5'>AI</b>引擎<b class='flag-5'>机器</b><b class='flag-5'>学习</b>阵列指南

    嵌入式系统的未来趋势有哪些?

    嵌入式系统是指将我们的操作系统和功能软件集成于计算机硬件系统之中,形成一个专用的计算机系统。那么嵌入式系统的未来趋势有哪些呢? 1. 人工智能与机器学习的整合 随着现代人工智能(AI
    发表于 09-12 15:42

    【《时间序列与机器学习》阅读体验】+ 了解时间序列

    。 可以探索现象发展变化的规律,对某些社会经济现象进行预测。 利用时间序列可以在不同地区或国家之间进行对比分析,这也是统计分析的重要方法之一。 而《时间序列与机器学习》一书的后几章分别介绍了时间序列在广告
    发表于 08-11 17:55

    人工智能、机器学习和深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning,
    的头像 发表于 07-03 18:22 1187次阅读

    分析 丨AI算法愈加复杂,但是机器视觉的开发门槛在降低

    机器视觉系统依赖于机器学习(machine learn)和深度学习(deep learn),尤其是深度学习
    的头像 发表于 02-19 16:49 655次阅读
    分析 丨<b class='flag-5'>AI</b>算法愈加复杂,但是<b class='flag-5'>机器</b>视觉的开发门槛在降低

    什么是机器学习?它的重要性体现在哪

    机器学习是一种人工智能(AI)的子领域,旨在使计算机系统通过经验自动学习和改进,而无需明确地进行编程。它侧重于开发算法和模型,使计算机能够从数据中提取模式、进行预测和做出决策,而无需显
    的头像 发表于 01-05 08:27 1538次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?它的<b class='flag-5'>重要</b>性体现在哪

    未来十不变的AI是什么?吴恩达等专家关于2024AI发展趋势的预测

    随着2024的到来,人工智能领域正迎来前所未有的变革和发展。从深度学习到自然语言处理,AI技术的每一个分支都在经历着快速的进步。在这个关键的时刻,业界专家们提出了对未来趋势的深刻洞察
    的头像 发表于 01-04 11:36 881次阅读
    未来十<b class='flag-5'>年</b>不变的<b class='flag-5'>AI</b>是什么?吴恩达等专家关于2024<b class='flag-5'>年</b><b class='flag-5'>AI</b>发展<b class='flag-5'>趋势</b>的预测