0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一个全新的深度学习框架——计图

倩倩 来源:电子技术应用ChinaAET 2020-03-26 15:50 次阅读

深度学习技术正广泛应用于人工智能的各个领域,如计算机视觉、机器翻译、自然语言处理、智能机器人等,取得了前所未有的突破。当前,一方面,随着深度学习新技术的出现、任务复杂度的提高,易于扩展同时保持高效的架构成为发展趋势;另一方面,我国人工智能产业发展迅速,急需构建自己的开源深度学习生态。

清华大学计算机系胡事民教授研究团队提出了一个全新的深度学习框架——计图(Jittor)。Jittor是一个采用元算子表达神经网络计算单元、完全基于动态编译(Just-in-Time)的深度学习框架。

图1 “计图”通过元算子融合实现深度神经网络模型

深度学习采用的卷积神经网络是由算子(Operator)组成的一个计算网络。由于架构设计和不断扩充等原因,当前深度学习框架有多达2000种算子,系统复杂,优化和移植困难。Jittor则将算子运算进一步分解,形成了更加底层的三类20余种元算子闭包,目前神经网络常用算子均可以使用元算子的组合进行表达。面向未来深度学习框架的发展趋势,Jittor利用元算子组合表达的优势,提出统一计算图进行优化,并从底层开始设计了一个全新的动态编译架构。该架构支持多种编译器,实现了所有代码的即时编译和动态运行,确保了实现和优化分离,大幅提升了应用开发灵活性、可拓展性和可移植性。

图2 “计图”与其他平台的计算图特性对比

Jittor与国际主流平台相比,具有多项先进特性(图2)。目前ResNet、VGG、SSD、DeepLab、LSGAN等多个网络模型已经在Jittor平台实现,可供用户使用。与同类型框架相比,Jittor在收敛精度一致情况下,推理速度取得了10%-50%的性能提升(图3)。

图3 Jittor和PyTorch推理与训练速度对比

Jittor的研发得到了国家自然科学基金创新群体项目、北京信息科学与技术国家研究中心团队项目和清华-腾讯联合实验室项目的资助。期望Jittor能为学界和业界提供一个灵活高效的深度学习平台,促进人工智能的研究和应用,赋能人工智能产业。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4762

    浏览量

    100534
  • 人工智能
    +关注

    关注

    1791

    文章

    46845

    浏览量

    237526
  • 深度学习
    +关注

    关注

    73

    文章

    5492

    浏览量

    120974
收藏 人收藏

    评论

    相关推荐

    NPU在深度学习中的应用

    随着人工智能技术的飞速发展,深度学习作为其核心驱动力之,已经在众多领域展现出了巨大的潜力和价值。NPU(Neural Processing Unit,神经网络处理单元)是专门为深度
    的头像 发表于 11-14 15:17 283次阅读

    GPU深度学习应用案例

    能力,可以显著提高图像识别模型的训练速度和准确性。例如,在人脸识别、自动驾驶等领域,GPU被广泛应用于加速深度学习模型的训练和推理过程。 二、自然语言处理 自然语言处理(NLP)是深度学习
    的头像 发表于 10-27 11:13 326次阅读

    NVIDIA推出全新深度学习框架fVDB

    在 SIGGRAPH 上推出的全新深度学习框架可用于打造自动驾驶汽车、气候科学和智慧城市的 AI 就绪型虚拟表示。
    的头像 发表于 08-01 14:31 522次阅读

    PyTorch深度学习开发环境搭建指南

    PyTorch作为种流行的深度学习框架,其开发环境的搭建对于深度学习研究者和开发者来说至关重要
    的头像 发表于 07-16 18:29 824次阅读

    利用Matlab函数实现深度学习算法

    在Matlab中实现深度学习算法是复杂但强大的过程,可以应用于各种领域,如图像识别、自然语言处理、时间序列预测等。这里,我将概述
    的头像 发表于 07-14 14:21 1891次阅读

    基于Python的深度学习人脸识别方法

    基于Python的深度学习人脸识别方法是涉及多个技术领域的复杂话题,包括计算机视觉、深度学习
    的头像 发表于 07-14 11:52 1178次阅读

    深度学习中的无监督学习方法综述

    深度学习作为机器学习领域的重要分支,近年来在多个领域取得了显著的成果,特别是在图像识别、语音识别、自然语言处理等领域。然而,
    的头像 发表于 07-09 10:50 501次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。
    的头像 发表于 07-05 09:47 812次阅读

    深度学习常用的Python库

    深度学习作为人工智能的重要分支,通过模拟人类大脑中的神经网络来解决复杂问题。Python作为种流行的编程语言,凭借其简洁的语法和丰富的
    的头像 发表于 07-03 16:04 562次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的重要分支,在过去十年中取得了显著的进展。在构建和训练深度学习模型的
    的头像 发表于 07-02 14:04 885次阅读

    深度学习模型训练过程详解

    深度学习模型训练是复杂且关键的过程,它涉及大量的数据、计算资源和精心设计的算法。训练
    的头像 发表于 07-01 16:13 1086次阅读

    深度学习编译工具链中的核心——优化

    等,需要调整优化网络中使用的算子或算子组合,这就是深度学习编译工具链中的核心——优化。优化是指对深度
    的头像 发表于 05-16 14:24 839次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>编译工具链中的核心——<b class='flag-5'>图</b>优化

    FPGA在深度学习应用中或将取代GPU

    ,这使得它比般处理器更高效。但是,很难对 FPGA 进行编程,Larzul 希望通过自己公司开发的新平台解决这个问题。 专业的人工智能硬件已经成为了独立的产业,但对于什么是深度
    发表于 03-21 15:19

    为什么深度学习的效果更好?

    导读深度学习是机器学习子集,已成为人工智能领域的项变革性技术,在从计算机视觉、自然语言处
    的头像 发表于 03-09 08:26 594次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    PatchMatch MVS求解器中深度估计的挑战性问题

    本文提出了全新学习型PatchMatch MVS框架,DS-PMNet,并嵌入了DeformSampler。这个框架能够以端到端的方式
    的头像 发表于 01-02 09:25 543次阅读
    PatchMatch MVS求解器中<b class='flag-5'>深度</b>估计的挑战性问题