0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何从其庞大的客户车队中获取训练数据,以训练其自动驾驶神经网络

倩倩 来源:PingWest品玩 2020-03-27 15:03 次阅读

PingWest品玩3月23日讯,据Electrek报道,电动汽车制造商特斯拉已经申请了一项专利,内容是如何从其庞大的客户车队中获取训练数据,以训练其自动驾驶神经网络

这项专利是为特斯拉申请的,但特斯拉人工智能和自动驾驶软件主管安德烈·卡帕西(Andrej Karparis)被指定为该申请的唯一发明人。

卡帕西描述了在应用程序中为深度学习培训收集数据的问题:“用于自动驾驶等应用的深度学习系统是通过训练机器学习模型来开发的。通常,深度学习系统的性能至少部分地受到用于训练模型的训练集的质量限制。在许多情况下,大量的资源被投入到收集、管理和注释培训数据上。创建训练集所需的工作量可能很大,而且通常是单调乏味的。此外,通常很难收集机器学习模型需要改进的特定用例的数据。”

特斯拉开发自动驾驶系统的方式与大多数其他公司大不相同。尽管大多数其他公司利用相对较少的测试车队来收集数据并测试其系统,但特斯拉使用其数十万辆配备了一系列传感器的客户汽车来收集道路和驾驶数据,并在“影子模式”下测试其自动驾驶系统。车队收集的这些数据对特斯拉训练其神经网络实现自动驾驶极其有价值。然而,他们必须小心他们收集并提供给网络的内容。

卡帕西在专利申请中注明:“随着机器学习模型变得越来越复杂,比如深层神经网络,大量训练数据集的必要性也相应增加。与浅层神经网络相比,这些深层神经网络可能需要更多的训练样本,以确保它们的泛化能力较高。例如,虽然神经网络可以被训练成对于所给训练数据来说高度精确,但其可能不能很好地推广到未见的未来示例中。在这个例子中,神经网络可能受益于训练数据中包含的额外示例。”

因此,卡帕西解释了他的专利方法,在传输之前就对源数据进行分类:“示例方法包括接收传感器并将神经网络应用于传感器数据。将触发器分类器应用于神经网络的中间结果,以确定传感器数据的分类器评分。根据至少部分分类器得分,决定是否通过计算机网络传输至少部分传感器数据。一旦确定为阳性,传感器数据就会被传输并用于生成训练数据。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4772

    浏览量

    100809
  • 自动驾驶
    +关注

    关注

    784

    文章

    13826

    浏览量

    166503
  • 深度学习
    +关注

    关注

    73

    文章

    5503

    浏览量

    121207
收藏 人收藏

    评论

    相关推荐

    LSTM神经网络训练数据准备方法

    LSTM(Long Short-Term Memory,长短期记忆)神经网络训练数据准备方法是一个关键步骤,它直接影响到模型的性能和效果。以下是一些关于LSTM神经网络
    的头像 发表于 11-13 10:08 639次阅读

    Python自动训练人工神经网络

    人工神经网络(ANN)是机器学习中一种重要的模型,它模仿了人脑神经元的工作方式,通过多层节点(神经元)之间的连接和权重调整来学习和解决问题。Python由于强大的库支持(如Tenso
    的头像 发表于 07-19 11:54 362次阅读

    如何使用经过训练神经网络模型

    使用经过训练神经网络模型是一个涉及多个步骤的过程,包括数据准备、模型加载、预测执行以及后续优化等。
    的头像 发表于 07-12 11:43 1004次阅读

    脉冲神经网络怎么训练

    脉冲神经网络(SNN, Spiking Neural Network)的训练是一个复杂但充满挑战的过程,它模拟了生物神经元通过脉冲(或称为尖峰)进行信息传递的方式。以下是对脉冲神经网络
    的头像 发表于 07-12 10:13 621次阅读

    BP神经网络样本的获取方法

    训练样本是至关重要的。 数据收集 数据收集是构建BP神经网络模型的第一步。根据研究领域和应用场景的不同,数据来源可以分为以下几种: 1.1
    的头像 发表于 07-11 10:50 607次阅读

    20个数据可以训练神经网络

    当然可以,20个数据点对于训练一个神经网络来说可能非常有限,但这并不意味着它们不能用于训练。实际上,神经网络可以
    的头像 发表于 07-11 10:29 914次阅读

    怎么对神经网络重新训练

    发生变化,导致神经网络的泛化能力下降。为了保持神经网络的性能,需要对进行重新训练。本文将详细介绍重新训练
    的头像 发表于 07-11 10:25 465次阅读

    BP神经网络的基本结构和训练过程

    BP神经网络,全称为反向传播神经网络(Backpropagation Neural Network),是一种在机器学习、数据挖掘和模式识别等领域广泛应用的人工神经网络模型。
    的头像 发表于 07-10 15:07 4566次阅读
    BP<b class='flag-5'>神经网络</b>的基本结构和<b class='flag-5'>训练</b>过程

    神经网络如何用无监督算法训练

    神经网络作为深度学习的重要组成部分,训练方式多样,其中无监督学习是一种重要的训练策略。无监督学习旨在从未标记的数据中发现
    的头像 发表于 07-09 18:06 813次阅读

    如何利用Matlab进行神经网络训练

    ,使得神经网络的创建、训练和仿真变得更加便捷。本文将详细介绍如何利用Matlab进行神经网络训练,包括网络创建、
    的头像 发表于 07-08 18:26 1900次阅读

    卷积神经网络训练的是什么

    训练过程以及应用场景。 1. 卷积神经网络的基本概念 1.1 卷积神经网络的定义 卷积神经网络是一种前馈深度学习模型,核心思想是利用卷积
    的头像 发表于 07-03 09:15 425次阅读

    如何训练和优化神经网络

    神经网络是人工智能领域的重要分支,广泛应用于图像识别、自然语言处理、语音识别等多个领域。然而,要使神经网络在实际应用取得良好效果,必须进行有效的训练和优化。本文将从
    的头像 发表于 07-01 14:14 480次阅读

    助听器降噪神经网络模型

    40 dB)更改为 -5 至 25 dB,包含负 SNR 并限制总范围。为了覆盖更细粒度的 SNR 分布,SNR 级别的数量 5 增加到 30。所有其他参数保持不变。 500 小时的数据集分为
    发表于 05-11 17:15

    利用神经网络对脑电图(EEG)降噪

    数据与干净的EEG数据构成训练数据,并且分成训练、验证和测试数据集。 绘制有噪声EEG
    发表于 04-30 20:40

    未来已来,多传感器融合感知是自动驾驶破局的关键

    巨大的进展;自动驾驶开始摒弃手动编码规则和机器学习模型的方法,转向全面采用端到端的神经网络AI系统,它能模仿学习人类司机的驾驶,遇到场景直接输入传感器数据,再直接输出转向、制动和加速信
    发表于 04-11 10:26