0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探索量子物理学,第一个用钻石操纵的电子轨道

独爱72H 来源:网络整理 作者:佚名 2020-04-02 16:21 次阅读

(文章来源:网络整理)

虽然钻石中的缺陷大多是不可取的,但某些缺陷是量子物理学家最好的朋友,有可能存储有朝一日可能在量子计算系统中使用的信息。康奈尔大学的应用物理学家已经展示了一种技术来设计这些缺陷的一些关键光学特性,为探索量子力学提供了一种新工具。

由应用和工程物理学教授Greg Fuchs领导的一组研究人员已经成为第一个使用谐振器产生的振动来帮助稳定这些光学特性的人,迫使钻石的电子进入激发的轨道状态。

就像计算机的晶体管通过“开”或“关”来记录二进制信息一样,这些原子级钻石缺陷的内部状态也可以代表信息的一些部分,例如它的旋转 - 一种角动量的内在形式 - 是“上或下。”但与仅具有两种状态的晶体管不同,自旋具有同时上下的量子能力。结合使用,这些量子态可以比晶体管以指数方式更好地记录和共享信息,从而允许计算机以一次难以想象的速度执行某些计算。

挑战:将量子信息从一个地方转移到另一个地方很困难。物理学家已经尝试了许多材料和技术,包括在称为氮空位中心的钻石的原子缺陷内使用光学特性。

“钻石氮空位中心可以很好地进行通信。所以你可以进行电子自旋,这是一个很好的量子态,然后你可以将它的状态转换成光子,”Fuchs说道。然后,光子可以将该位信息传送到另一个缺陷。“这样做的挑战之一就是稳定它并让它按照你想要的方式工作。我们提供了一个新的工程箱,用于工程的光学转换,希望能让它变得更好。”

研究团队首先需要设计一种可以通过钻石缺陷发出振动波的设备。千兆频率机械谐振器由单晶金刚石制成,然后以约1千兆赫兹振动的声波通过缺陷发送。

目标是使用声音来改变缺陷的光学跃迁,其中从一种能态到另一种能量态的变化导致光子的发射。这些转变倾向于基于各种环境条件而波动,使得难以产生用于携带信息的相干光子。例如,随机波动的电场可能会使光学过渡波长不稳定,负责这项研究的博士生Huiyao Chen表示。

“为了抑制这些非相干波动的影响,”陈说,“我们能做的一件事就是消除电子轨道和不需要的随机电场之间的耦合。这就是谐振器产生的声波发挥作用的地方“。

为了了解实验是否有效,研究小组使用带可调波长激光的显微镜扫描钻石的氮空位中心。当激光的波长与光学跃迁共振时,可以看到发射的光子,这是电子已经达到激发态的确定指示。然后研究人员研究了声波如何改变轨道态,从而改变光学过渡。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子信息
    +关注

    关注

    0

    文章

    52

    浏览量

    12732
  • 量子计算机
    +关注

    关注

    4

    文章

    519

    浏览量

    25338
收藏 人收藏

    评论

    相关推荐

    2024年诺贝尔物理学奖为何要颁给机器学习?

    电子发烧友网报道(文/黄山明)近日,据新华社报道,瑞典皇家科学院宣布,将2024年诺贝尔物理学奖授予美国科学家约翰·霍普菲尔德(John Hopfield)和英国裔加拿大科学家杰弗里·欣顿
    的头像 发表于 10-10 00:11 3503次阅读

    《图说本源产品》系列之二:量子计算全物理体系学习机

    科技自立自强不能停留在论文中、汇报中和总结中,而是要一个一个产品制造出来。本源,拥有中国第一条超导量子计算机制造链。《图说本源产品》以图片形式,系列展示中国自主量子计算系列产品。产品简
    的头像 发表于 07-26 08:23 261次阅读
    《图说本源产品》系列之二:<b class='flag-5'>量子</b>计算全<b class='flag-5'>物理</b>体系学习机

    【《计算》阅读体验】量子计算

    经典计算机的能力。 量子计算的重要性在于三点。首先,量子计算对强丘奇-图灵论题提出了明确挑战。强丘奇-图灵论题断言,任何可物理实现的计算装置都可以被图灵机模拟,而计算速度至多下降
    发表于 07-13 22:15

    更精确操纵光束:新型超表面设计推动光学物理学发展

    多层自旋多路复用超表面在多路复用衍射神经网络(MDNN)中充当神经元,用于检测和分类矢量结构光束。 在充满活力的光学物理领域,研究人员正在不断突破如何操纵和利用光进行实际应用的界限。 据
    的头像 发表于 06-27 06:27 219次阅读
    更精确<b class='flag-5'>操纵</b>光束:新型超表面设计推动光学<b class='flag-5'>物理学</b>发展

    中国自主研制的第三代量子计算机“本源悟空”全球访问量突破500万

    据悉,每年的 4 月 14 日被视为“世界量子日”,量子科学家于 2021 年倡议设立,旨在推广量子科技知识。其日期定为 4 月 14 日因普朗克常数的近似值为 414,这是量子
    的头像 发表于 04-15 10:41 4076次阅读

    弧形导轨在自动化设备中的传动原理

    在自动化机械系统中,弧形导轨是种常见的轨道结构,用于支撑和引导物体沿着指定的弧线运动。其工作原理基于几何学和物理学的原理。
    的头像 发表于 03-30 17:39 575次阅读
    弧形导轨在自动化设备中的传动原理

    求助,CubeMX配置占空比30%的PWM输出第一个波形不准确是为什么?

    的是G0的芯片配置,通过抓波发现第一个波形永远与我配置的占空比不准确,但是除了第一个周期不准确外,后面的都没问题。
    发表于 03-18 07:55

    量子计算机重构未来 | 阅读体验】 跟我起漫步量子计算

    的干扰,保持量子比特的稳定性是巨大的技术难题。此外,量子编程和算法的发展也还处于初级阶段,需要更多的研究和探索。 尽管面临挑战,但
    发表于 03-13 19:28

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    )的状态,由瑞士物理学家费利克斯·布洛赫(Felix Bloch)在1929年提出。布洛赫球是单位二维球面 (注意:只是球面而非球体)。 在布洛赫球上,
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】+ 初识量子计算机

    欣喜收到《量子计算机——重构未来》书,感谢电子发烧友论坛提供了让我了解量子计算机的机会!
    发表于 03-05 17:37

    拓扑量子器件的突破性进展

    1月18日,德累斯顿和维尔茨堡的量子物理学家们取得了显著的科技突破。他们研发出种半导体器件,其卓越的鲁棒性和敏感度得益于量子现象——拓
    的头像 发表于 01-23 14:59 513次阅读
    拓扑<b class='flag-5'>量子</b>器件的突破性进展

    世界上第一个石墨烯半导体的“石墨烯”究竟是什么?

    有媒体报道称有研究团队创造了世界上第一个由石墨烯制成的功能半导体(Functional Graphene Semiconductor)。
    的头像 发表于 01-23 11:26 1083次阅读

    差示扫描量热仪 紫薯抗性淀粉的制备工艺及物理学特性研究

    温度、比热容及热焓等。紫薯抗性淀粉的制备工艺及物理学特性研究【(1、吉林省农业科学院农产品加工研究所2、吉林农业大学食品科学与工程学院,马林元;李璐;孙洪蕊;刘香英
    的头像 发表于 01-23 10:31 233次阅读
    差示扫描量热仪 紫薯抗性淀粉的制备工艺及<b class='flag-5'>物理学</b>特性研究

    种新型量子光学技术

    这项研究于1月15日发表在《自然·物理学》杂志上,它使用了种新的光谱技术来探索量子尺度上光子和电子之间的相互作用。
    的头像 发表于 01-18 10:08 354次阅读
    <b class='flag-5'>一</b>种新型<b class='flag-5'>量子</b>光学技术

    电磁学、磁电学与磁电子学是回事吗

    电磁学是研究宏观电磁现象以及电与磁交互关联的物理学分支学科。
    的头像 发表于 11-20 14:38 805次阅读
    电磁学、磁电学与磁<b class='flag-5'>电子</b>学是<b class='flag-5'>一</b>回事吗