0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

探索量子物理学,第一个用钻石操纵的电子轨道

独爱72H 来源:网络整理 作者:佚名 2020-04-02 16:21 次阅读

(文章来源:网络整理)

虽然钻石中的缺陷大多是不可取的,但某些缺陷是量子物理学家最好的朋友,有可能存储有朝一日可能在量子计算系统中使用的信息。康奈尔大学的应用物理学家已经展示了一种技术来设计这些缺陷的一些关键光学特性,为探索量子力学提供了一种新工具。

由应用和工程物理学教授Greg Fuchs领导的一组研究人员已经成为第一个使用谐振器产生的振动来帮助稳定这些光学特性的人,迫使钻石的电子进入激发的轨道状态。

就像计算机的晶体管通过“开”或“关”来记录二进制信息一样,这些原子级钻石缺陷的内部状态也可以代表信息的一些部分,例如它的旋转 - 一种角动量的内在形式 - 是“上或下。”但与仅具有两种状态的晶体管不同,自旋具有同时上下的量子能力。结合使用,这些量子态可以比晶体管以指数方式更好地记录和共享信息,从而允许计算机以一次难以想象的速度执行某些计算。

挑战:将量子信息从一个地方转移到另一个地方很困难。物理学家已经尝试了许多材料和技术,包括在称为氮空位中心的钻石的原子缺陷内使用光学特性。

“钻石氮空位中心可以很好地进行通信。所以你可以进行电子自旋,这是一个很好的量子态,然后你可以将它的状态转换成光子,”Fuchs说道。然后,光子可以将该位信息传送到另一个缺陷。“这样做的挑战之一就是稳定它并让它按照你想要的方式工作。我们提供了一个新的工程箱,用于工程的光学转换,希望能让它变得更好。”

研究团队首先需要设计一种可以通过钻石缺陷发出振动波的设备。千兆频率机械谐振器由单晶金刚石制成,然后以约1千兆赫兹振动的声波通过缺陷发送。

目标是使用声音来改变缺陷的光学跃迁,其中从一种能态到另一种能量态的变化导致光子的发射。这些转变倾向于基于各种环境条件而波动,使得难以产生用于携带信息的相干光子。例如,随机波动的电场可能会使光学过渡波长不稳定,负责这项研究的博士生Huiyao Chen表示。

“为了抑制这些非相干波动的影响,”陈说,“我们能做的一件事就是消除电子轨道和不需要的随机电场之间的耦合。这就是谐振器产生的声波发挥作用的地方“。

为了了解实验是否有效,研究小组使用带可调波长激光的显微镜扫描钻石的氮空位中心。当激光的波长与光学跃迁共振时,可以看到发射的光子,这是电子已经达到激发态的确定指示。然后研究人员研究了声波如何改变轨道态,从而改变光学过渡。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子信息
    +关注

    关注

    0

    文章

    54

    浏览量

    12791
  • 量子计算机
    +关注

    关注

    4

    文章

    534

    浏览量

    25711
收藏 人收藏

    评论

    相关推荐

    2024年诺贝尔物理学奖为何要颁给机器学习?

    电子发烧友网报道(文/黄山明)近日,据新华社报道,瑞典皇家科学院宣布,将2024年诺贝尔物理学奖授予美国科学家约翰·霍普菲尔德(John Hopfield)和英国裔加拿大科学家杰弗里·欣顿
    的头像 发表于 10-10 00:11 3987次阅读

    北京理工大学在量子显微成像方面取得重要进展,实现量子全息显微

    的共同第一作者,北京理工大学物理学院张向东教授为论文通讯作者,北京理工大学物理学院张卓研究生也为该工作做出了重要贡献。该研究工作得到
    的头像 发表于 02-27 06:23 138次阅读
    北京理工大学在<b class='flag-5'>量子</b>显微成像方面取得重要进展,实现<b class='flag-5'>量子</b>全息显微

    锁相放大器在物理学中的应用

    物理学的研究中,信号的精确测量与分析直是科学实验的关键。随着技术的发展,许多实验中涉及到的信号越来越微弱,传统的仪器设备很难直接检测这些信号。如何有效地提取微弱信号,特别是从噪声中区分出有用信号
    的头像 发表于 02-11 16:35 135次阅读
    锁相放大器在<b class='flag-5'>物理学</b>中的应用

    神经网络理论研究的物理学思想介绍

    本文主要介绍神经网络理论研究的物理学思想 神经网络在当今人工智能研究和应用中发挥着不可替代的作用。它是人类在理解自我(大脑)的过程中产生的副产品,以此副产品,人类希望建造机器智能来实现机器文明
    的头像 发表于 01-16 11:16 540次阅读
    神经网络理论研究的<b class='flag-5'>物理学</b>思想介绍

    霍尔效应和量子霍尔效应的原理与机制

      本文介绍了霍尔效应和量子霍尔效应的原理与机制。 量子霍尔效应是指在低温和强磁场环境下的二维电子系统中出现的种现象。自1980年,首次发现量子
    的头像 发表于 01-07 10:20 382次阅读

    无所不能的MATLAB|证明曲速引擎的物理学原理

    中随处可见,但这“科学”部分却始终无法实现。 据《大众机械》报道,“研究人员直对曲速引擎的概念很感兴趣,这概念由墨西哥物理学家明戈·阿尔库贝利于 1994 年首次提出。”“根据理论上的阿尔库贝利曲速引擎概念,航天器可以通过收
    的头像 发表于 12-04 09:50 403次阅读
    无所不能的MATLAB|证明曲速引擎的<b class='flag-5'>物理学</b>原理

    光电效应与电子伏特效应的区别

    。 光电效应 光电效应是指当光照射到金属表面时,金属会释放出电子的现象。这现象最早由德国物理学家海因里希·赫兹在1887年发现,但直到1905年,阿尔伯特·爱因斯坦提出了光电效应的量子
    的头像 发表于 11-25 13:38 500次阅读

    NVIDIA 助力谷歌量子 AI 通过量子器件物理学模拟加快处理器设计

    ,使用 NVIDIA CUDA-Q™ 平台进行模拟,加快下量子计算器件的设计工作。   谷歌量子 AI 正在使用量子-经典混合计算平台和 NVIDIA Eos 超级计算机,来模拟其
    发表于 11-19 10:39 328次阅读
    NVIDIA 助力谷歌<b class='flag-5'>量子</b> AI 通过<b class='flag-5'>量子</b>器件<b class='flag-5'>物理学</b>模拟加快处理器设计

    《图说本源产品》系列之二:量子计算全物理体系学习机

    科技自立自强不能停留在论文中、汇报中和总结中,而是要一个一个产品制造出来。本源,拥有中国第一条超导量子计算机制造链。《图说本源产品》以图片形式,系列展示中国自主量子计算系列产品。产品简
    的头像 发表于 07-26 08:23 497次阅读
    《图说本源产品》系列之二:<b class='flag-5'>量子</b>计算全<b class='flag-5'>物理</b>体系学习机

    【《计算》阅读体验】量子计算

    经典计算机的能力。 量子计算的重要性在于三点。首先,量子计算对强丘奇-图灵论题提出了明确挑战。强丘奇-图灵论题断言,任何可物理实现的计算装置都可以被图灵机模拟,而计算速度至多下降
    发表于 07-13 22:15

    更精确操纵光束:新型超表面设计推动光学物理学发展

    多层自旋多路复用超表面在多路复用衍射神经网络(MDNN)中充当神经元,用于检测和分类矢量结构光束。 在充满活力的光学物理领域,研究人员正在不断突破如何操纵和利用光进行实际应用的界限。 据
    的头像 发表于 06-27 06:27 390次阅读
    更精确<b class='flag-5'>操纵</b>光束:新型超表面设计推动光学<b class='flag-5'>物理学</b>发展

    中国自主研制的第三代量子计算机“本源悟空”全球访问量突破500万

    据悉,每年的 4 月 14 日被视为“世界量子日”,量子科学家于 2021 年倡议设立,旨在推广量子科技知识。其日期定为 4 月 14 日因普朗克常数的近似值为 414,这是量子
    的头像 发表于 04-15 10:41 4455次阅读

    求助,CubeMX配置占空比30%的PWM输出第一个波形不准确是为什么?

    的是G0的芯片配置,通过抓波发现第一个波形永远与我配置的占空比不准确,但是除了第一个周期不准确外,后面的都没问题。
    发表于 03-18 07:55

    量子计算机重构未来 | 阅读体验】 跟我起漫步量子计算

    的干扰,保持量子比特的稳定性是巨大的技术难题。此外,量子编程和算法的发展也还处于初级阶段,需要更多的研究和探索。 尽管面临挑战,但
    发表于 03-13 19:28

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    )的状态,由瑞士物理学家费利克斯·布洛赫(Felix Bloch)在1929年提出。布洛赫球是单位二维球面 (注意:只是球面而非球体)。 在布洛赫球上,
    发表于 03-13 17:19