0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

超短光脉冲诱导金刚石光学声子量子态的控制

独爱72H 来源:网络整理 作者:佚名 2020-04-02 17:10 次阅读

(文章来源:网络整理)

晶格中原子的超短光脉冲引起的振动,称为光学相干声子,已经在各种材料中得到控制。然而,通过多种经验理论解释了证明这种控制的不同实验,并且缺乏基于量子力学的统一理论。东京工业大学的科学家成功地为这一现象制定了统一的理论,并在钻石中进行了实验验证,其光学声子在量子信息技术中具有很大的应用潜力。

当光脉冲极短时进入一个固体,其晶格中的原子开始振动。总的来说,原子的这种振动表现出波浪状和类似粒子的行为,而在量子力学中,这些振动被称为相干光学声子,因为它们是由光诱导并在相位上振荡。声子可以确定固体的各种物理性质,例如热和电导率。在先前的实验中,相干光学声子的特性,例如幅度和相位,已经通过称为相干控制的技术在各种材料中成功地控制,这已经通过超快激光技术的进步而成为可能。然而,已经使用不同的经验理论解释了不同相干对照实验的结果。

超短光脉冲诱导金刚石光学声子量子态的控制

由东京工业大学(东京工业大学)的Kazutaka G. Nakamura教授领导的研究小组与Keio大学量子计算中心的Yutaka Shikano教授和查普曼大学量子研究所合作,最近制定了一个从根本上和实际上解释的理论框架。相干光学光子的产生和检测。该理论基于涉及两种电子状态的模型以及量子谐振子,量子谐振子是少数已知精确解的量子力学系统之一。基于该理论的计算表明,受控声子的幅度可以用两个正弦函数的和来表示。

为了验证这一理论,科学家们对钻石进行了相干控制实验。钻石是该领域非常重要的材料,因为其光学声子的相干控制有望开发量子记忆。在实验中,通过采用两个极短的激光脉冲实现相干控制,称为泵浦脉冲:一个脉冲引起振荡,或者是声子,而另一个是控制振荡的幅度。改变两个脉冲之间的时间间隔以控制所产生的声子的特性。在两个泵浦脉冲之后以延迟发送的探测脉冲用于通过检测该脉冲相对于延迟的发射强度的变化来测量所产生的声子的特性。

由金刚石中的泵脉冲引起的受控振荡的测量幅度和相位与该理论的预测显示出显着的一致性。因此,已经实现了对相干光学声子的相干控制的全面理解。除了电子学,光学,材料科学和超导学中的其他应用之外,该理论预计还可用于量子计算的存储系统的开发。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子态
    +关注

    关注

    0

    文章

    8

    浏览量

    2169
  • 光脉冲
    +关注

    关注

    0

    文章

    21

    浏览量

    2580
收藏 人收藏

    评论

    相关推荐

    化合积电推出硼掺杂单晶金刚石,推动金刚石器件前沿应用与开发

    【DT半导体】获悉,化合积电为了大力推动金刚石器件的应用和开发进程,推出硼掺杂单晶金刚石,响应广大客户在金刚石器件前沿研究的需求。 金刚石,作为超宽带隙半导体,被公认为终极功率半导体,
    的头像 发表于 02-19 11:43 259次阅读
    化合积电推出硼掺杂单晶<b class='flag-5'>金刚石</b>,推动<b class='flag-5'>金刚石</b>器件前沿应用与开发

    金刚石-石墨烯异质结构涂层介绍

    金刚石和石墨烯固有的脆性和缺乏自我支撑能力限制了它们在耐用润滑系统中的应用。
    的头像 发表于 02-13 10:57 129次阅读
    <b class='flag-5'>金刚石</b>-石墨烯异质结构涂层介绍

    优化单晶金刚石内部缺陷:高温退火技术

    单晶金刚石被誉为“材料之王”,凭借超高的硬度、导热性和化学稳定性,在半导体、5G通信、量子科技等领域大放异彩。 硬度之王: 拥有超高的硬度,是磨料磨具的理想选择。 抗辐射性强: 在半导体和量子信息
    的头像 发表于 02-08 10:51 144次阅读
    优化单晶<b class='flag-5'>金刚石</b>内部缺陷:高温退火技术

    革新突破:高性能多晶金刚石散热片引领科技新潮流

    随着电子器件越来越小、功率越来越高,散热成为制约性能的“头号难题”。传统材料(如铜、硅)热导率有限,而金刚石的热导率是铜的 5倍 以上,堪称“散热王者”!但大尺寸高导热金刚石制备成本高、工艺复杂
    的头像 发表于 02-07 10:47 219次阅读

    一文解析大尺寸金刚石晶圆复制技术现状与未来

    在半导体技术飞速发展的今天,大尺寸晶圆的高效制备成为推动行业进步的关键因素。而在众多半导体材料中,金刚石凭借其超宽禁带、高击穿电场、高热导率等优异电学性质,被视为 “终极半导体”,在电真空器件、高频
    的头像 发表于 02-07 09:16 190次阅读
    一文解析大尺寸<b class='flag-5'>金刚石</b>晶圆复制技术现状与未来

    金刚石:从合成到应用的未来材料

    金刚石的优异性能与广阔前景 金刚石,因其优异的机械、电学、热学和光学性能,被誉为“材料之王”,在多个领域展现出广阔的发展前景: 机械性能:极高的硬度和耐磨性,使其成为切削工具和耐磨涂层的理想材料
    的头像 发表于 01-03 13:46 302次阅读
    <b class='flag-5'>金刚石</b>:从合成到应用的未来材料

    探讨金刚石增强复合材料:金刚石/铜、金刚石/镁和金刚石/铝复合材料

    在当今科技飞速发展的时代,热管理材料的需求日益增长,特别是在电子封装、高功率设备等领域。金属基金刚石增强复合材料,以其独特的性能,成为了这一领域的新星。今天,我们就来详细探讨三种金刚石增强复合材料
    的头像 发表于 12-31 09:47 441次阅读

    欧盟批准西班牙补贴金刚石晶圆厂

    欧盟委员会近日正式批准了西班牙政府对Diamond Foundry位于特鲁希略的金刚石晶圆制造厂提供的8100万欧元(约合6.15亿元人民币)补贴。这一决定为Diamond Foundry在该地
    的头像 发表于 12-27 11:16 321次阅读

    探秘合成大尺寸单晶金刚石的路线与难题

    金刚石因其优异的机械、电学、热学和光学性能,展现出广阔的发展前景。然而,目前工业上通过高温高压法批量生产的单晶金刚石尺寸通常小于10毫米,这极大限制了其在许多领域的应用。因此,实现大尺寸金刚石
    的头像 发表于 12-18 10:38 510次阅读
    探秘合成大尺寸单晶<b class='flag-5'>金刚石</b>的路线与难题

    金刚石遇上激光:不同激光类型加工效果大揭秘

    金刚石加工困难,而激光加工技术为其提供了解决方案,将激光加工技术应用于金刚石加工,可实现金刚石的高效、高精度加工。上期我们了解了金刚石的激光加工原理,今天一起来看看不同激光束类型作用于
    的头像 发表于 11-29 11:36 682次阅读
    <b class='flag-5'>金刚石</b>遇上激光:不同激光类型加工效果大揭秘

    金刚石多晶材料:高功率器件散热解决方案

    随着电子器件功率密度的不断提升,尤其是在5G通信、电动汽车、高功率激光器、雷达和航空航天等领域,对高效散热解决方案的需求日益迫切。金刚石多晶材料凭借其超高的热导率、优异的机械性能和化学稳定性,成为高
    的头像 发表于 11-27 16:54 597次阅读

    金刚石/GaN 异质外延与键合技术研究进展

    的界面热阻(30±5 m2·K·GW-1),认为是SiC 保护层与金刚石有更强的结合力,相比于直接在AlGaN 上沉积金刚石,SiC 与金刚石之间形成了更多的碳化物键,有助于界面的
    的头像 发表于 11-01 11:08 610次阅读

    上海光机所在提升金刚石晶体的光学性能研究方面获新进展

    图1.退火前后金刚石的应力双折射、可见吸收光谱(左)和红外光谱(右) 近日,中科院上海光机所先进激光与光电功能材料部激光晶体研究中心与浙江无限钻科技发展有限公司合作,在提升金刚石晶体的光学性能研究
    的头像 发表于 09-12 06:25 438次阅读
    上海光机所在提升<b class='flag-5'>金刚石</b>晶体的<b class='flag-5'>光学</b>性能研究方面获新进展

    金刚石的熔沸点高于晶体硅的原因

    金刚石和晶体硅都是原子晶体,它们的熔沸点主要取决于原子间的键合强度。以下是一些关键因素,这些因素决定了金刚石的熔沸点高于晶体硅: 原子间键的类型 :金刚石中的碳原子之间形成非常强的共价键,称为sp3
    的头像 发表于 08-08 10:18 1602次阅读

    金刚石碳化硅晶体硅的熔沸点怎么比较

    金刚石、碳化硅和晶体硅都是由碳元素构成的晶体材料,它们具有不同的晶体结构和化学性质。 一、晶体结构 金刚石 金刚石是一种具有四面体结构的碳原子晶体。每个碳原子都与四个其他碳原子通过共价键相连,形成一
    的头像 发表于 08-08 10:17 2492次阅读