0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于锂电池自放电和过放电现象的探讨

独爱72H 来源:锂电池UPS 作者:佚名 2020-04-13 20:14 次阅读

(文章来源:锂电池UPS)
随着锂电池能量密度进一步提高和成本进一步降低,其在电动汽车和储能领域得到了广泛的应用,锂电池自放电和过放电一致性对电动汽车和储能系统的寿命和可靠性有着非常重要的作用,从锂电池自放电和过放电形成机理、影响因素以及检测方法等方面对近年来锂电池自放电和过放电研究成果进行了综述。

自放电是电池在存储中容量自然损失的一种现象,一般表现为存储一段时间后开路电压下降。锂电池自放电按照反应类型可分为物理自放电和化学自放电。从自放电对电池影响有客将自放电分为两类:损失容量能够可逆得到补偿的自放电以及损失容量无法可逆得到的补偿的自放电,通常情况下物理自放电导致的容量损失是可逆的,而化学自放电导致的容量损失是不可逆的。

锂电池因其本身无污染、比能量高、循环寿命长等特性被广泛应用在各种仪表和电动汽车上作为能源系统,而锂电池自放电现象的存在不仅造成电池本身能量的损失,还会因各电池间自放电的不一致性导致锂电池组寿命减少,容量迅速衰减引起电池管理系统(BMS)对电池荷电状态(SOC)的预测出现较大误差,电动车控制策略失效,致使电动车电池系统出现过放电的情况。

锂电池自放电的原因,造成可逆容量损失的原因:可逆容量损失的原因是发生了可逆放电反应,原理跟电池正常放电反应一致。不同点是正常放电电子路径为外电路、反应速度很快;自放电的电子路径是电解液、反应速度很慢。

造成不可逆容量损失的原因:当电池内部发生了不可逆反应时,所造成的容量损失及为不可逆容量损失的。所发生不可逆反应的类型主要包括:正极与电解液发生的不可逆反应、负极材料与电解液发生的不可逆反应、电解液自身所带杂质引起的不可逆反应、制成时杂质造成的微短路所引起的不可逆反应。

自放电率是衡量锂电池寿命的重要参数,而自放电过程发生在电池内部与电池材料和工艺相关,并随着环境温度、储存时间、荷电状态的变化而变化。对锂电池自放电实现快速检测能够缩短自放电参数测量的时间周期提高其准确性,自放电检测可应用于电池组合技术,在实际应用中为电池的一致性研究和分选工作提供新的理论数据,进而改善锂电池的性能。

电池放完内部储存的电量,电压达到一定值后继续放电就会造成过放电,通常根据放电电流来确定放电截止电压。电池过放可能会给电池带来灾难性的后果,特别是大电流过放或反复过放对电池影响更大,一般而言过放电会使电池内压升高,正负极活性物质可逆性受到破坏,即使充电也只能部分恢复容量也会有明显衰减。

为了保证石墨层中放电后留有部分锂离子就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。

锂电池放电时间长短与电池容量、放电电流大小有关,电池放电时间(小时)=电池容量/放电电流;锂电池放电电流不应超过电池容量的3倍,否则会使电池损坏。

锂电池过放电的影响,电池标准中规定的终止电压值,是电池连续放电时所达到的电压值;但实际使用过程中多是断断续续放电,那么即使放电到规定的终止电压值,也往往会出现过放电。当电池放电到终止电压之后,静置数分钟到半小时,电池电压会自动升高。这就误导了用户认为电池仍可继续放电,从而造成了电池过放电。

电池进行周期治疗充放电,虽然可以使电池容量较前一次有所提高,但连续进行过度深放电不但起不到进一步激活未参加反应的活性物质的正作用,而且与此相反会引起正板栅腐蚀和一部分α-PbO2向β-PbO2的转化,结果必然缩短电池的循环寿命。放电深度越深电池容量下降的就越快,过放电和周期治疗产生的副作用就越明显,电池的循环寿命就越短。

目前大多数电子产品的电池都采用锂电池,锂电池自1990年问世以来因其卓越的性能得到了迅猛的发展广泛地应用于社会,锂电池生产商也因此得到了最大规模的发展。不需要将锂电池充到百分之100满电,更不要将电量使用殆尽。在情况允许的情况下尽量使电池的电量维持在半满状态附近,充电与放电的幅度越小越好。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂电池
    +关注

    关注

    260

    文章

    8200

    浏览量

    172160
  • 电池放电
    +关注

    关注

    0

    文章

    79

    浏览量

    10186
收藏 人收藏

    评论

    相关推荐

    什么是锂电池?(全面介绍)

    锂电池之所以能够在众多领域发挥重要作用,与其优异的性能特点密不可分。它具有高能量密度,能够在较小的体积和重量下储存大量的电能;循环寿命长,可进行多次充放电而性能不会明显下降;自放电率低,在闲置状态下
    的头像 发表于 12-06 17:04 1997次阅读
    什么是<b class='flag-5'>锂电池</b>?(全面介绍)

    如何设计锂电池相关电路避免锂电池边充边放?

    板的输出端(即CN3791的输入端)和负载之间串联一个二极管,以确保在太阳能电池板供电时,负载优先使用太阳能的电力,而不会引发锂电池放电。但是这个方法会不会导致太阳能电池板无法给
    发表于 11-15 10:59

    三元锂电池放电特性及应用

    随着科技的进步和环保意识的增强,锂电池因其高能量密度、长寿命和环保特性而成为新能源领域的明星。三元锂电池作为锂电池的一种,因其独特的优势在众多领域得到广泛应用。 三元锂电池
    的头像 发表于 10-31 09:46 859次阅读

    锂电池保护芯片的工作原理

    作为电池重要部件之一,锂电池保护电路是锂电池安全的关键组成部分,它主要用于监测和控制电池的充放电过程,以确保
    的头像 发表于 10-21 09:36 853次阅读
    <b class='flag-5'>锂电池</b>保护芯片的工作原理

    PL7072C锂电池保护电路:高精度过充放解决方案

    PL7072C锂电池保护电路:高精度过充放解决方案 锂电池充电放电安全新选择:PL7072C高精度保护模块 防止锂电池
    发表于 09-28 15:31

    想测量3.7V锂电池的充放电电流,请问INA199能检测双向电流吗?

    想测量3.7V锂电池的充放电电流,请问INA199能检测双向电流吗?该怎么接。
    发表于 08-30 06:18

    PST9600单节锂离子电池充电管理、锂电池正极智能放电保护芯片中文手册

    和反接保护等功能,兼容不同充电电流,适用于各种小型锂电池设备。芯片特性充电/放电管理:支持3mA-500mA可编程充电电流,放电流0.5A保护。
    发表于 07-19 11:43 0次下载

    锂电池放电测试方法详解

    为了确保锂电池在实际使用中的性能和安全性,一个重要的环节就是对电池进行充放电测试。这些测试能够评估电池的容量、功率、稳定性及其长期的可靠性。本文将详解不同的
    的头像 发表于 06-13 09:21 4521次阅读
    <b class='flag-5'>锂电池</b>充<b class='flag-5'>放电</b>测试方法详解

    锂电池软包和大单体放电有什么区别?放电大好还是不好?

    锂电池放电性能是衡量其作为电源使用时的重要指标之一。
    的头像 发表于 05-07 11:12 7424次阅读

    锂电池自放电是什么原因引起的?自放电电池的影响?

    锂电池自放电是指电池在未使用或储存状态下,由于内部和外部因素导致电量逐渐减少的现象
    的头像 发表于 04-28 17:09 4948次阅读

    锂电池能快速放电

    锂电池作为一种高效的能源存储设备,被广泛应用于从小型电子设备到大型电动汽车的各个领域。一个关键的性能指标是其充放电速率,即电池在单位时间内可以存储或释放多少电量。
    的头像 发表于 04-24 14:55 1152次阅读

    锂电池供电电路保护方案

    ,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池
    发表于 04-16 03:07

    锂电池放电作业和用电方面的安全要求有哪些?

    锂电池放电作业和用电方面的安全要求有哪些
    的头像 发表于 03-22 10:11 1248次阅读
    <b class='flag-5'>锂电池</b>充<b class='flag-5'>放电</b>作业和用电方面的安全要求有哪些?

    单节可充电锂电池充电和放电保护电路PL7071数据手册

    电子发烧友网站提供《单节可充电锂电池充电和放电保护电路PL7071数据手册》资料免费下载
    发表于 02-25 09:10 0次下载

    单节可充电锂电池充电和放电保护电路PL7071数据手册

    概述PL7071 系列电路是一款高精度的单节可充电锂电池充电和放电保护电路,它集高精度过电压充电保护、过电压放电保护、过电流
    发表于 02-19 09:21 0次下载