0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

纳米电子学的“模拟助推器”,进一步改善晶体管

独爱72H 来源:网络整理 作者:佚名 2020-04-14 16:44 次阅读

(文章来源:网络整理)

苏黎世联邦理工学院的两个研究小组开发了一种方法,可以逼真,快速,高效地模拟纳米电子器件及其性能。这给行业和数据中心运营商都带来了一线希望,这两家公司都在为越来越小且功能强大的晶体管带来的(过热)苦苦挣扎。

芯片制造商已经在组装尺寸仅为几纳米的晶体管。它们比人的头发要小得多,在细的情况下,人的头发的直径约为20,000纳米。现在,对功能越来越强大的超级计算机的需求正在推动行业开发更小,同时功能更强大的组件。

但是,除了物理规律使制造超大规模晶体管变得更加困难之外,不断增加的散热问题还是制造商处于棘手的状况-部分原因是冷却需求的急剧上升以及由此产生的能源需求。由ETH教授Torsten Hoefler和Mathieu Luisier领导的研究小组在最近的研究中报告说,为某些数据中心冷却计算机已经占到了40%的功耗。他们希望这将允许开发一种更好的方法。通过他们的研究,研究人员获得了ACM Gordon Bell奖,这是超级计算机领域最负盛名的奖,该奖每年在美国SC超级计算会议上颁发。

为了提高当今的纳米晶体管的效率,苏黎世联邦理工学院集成系统实验室(IIS)的Luisier领导的研究小组使用名为OMEN的软件对晶体管进行了仿真,该软件被称为量子传输模拟器。

OMEN根据所谓的密度泛函理论进行计算,从而可以在原子分辨率和量子力学水平上对晶体管进行逼真的仿真。该仿真可视化了电流如何流过纳米晶体管以及电子如何与晶体振动相互作用,从而使研究人员能够精确地识别产生热量的位置。反过来,OMEN还提供了关于仍有改进空间的有用线索。

直到现在,传统的编程方法和超级计算机只允许研究人员模拟由大约1000个原子组成的晶体管的散热,因为处理器之间的数据通信和内存需求使得无法对大型物体进行逼真的模拟。

大多数计算机程序不会将大部分时间花费在执行计算操作上,而是在处理器,主存储器和外部接口之间移动数据。根据科学家的说法,OMEN也遭受了明显的沟通瓶颈,从而降低了性能。Luisier说:“该软件已经在半导体行业中使用,但是在数值算法和并行化方面还有很大的改进空间。”

到目前为止,如Luisier所解释的那样,OMEN的并行化是根据电热问题的物理原理设计的。现在,博士 学生Alexandros Ziogas和博士后Tal Ben-Nun(在苏黎世联邦理工学院可扩展并行计算实验室负责人Hoefler的领导下工作)没有研究物理,而是研究数据之间的依赖性。他们根据这些依赖关系有效地重新组织了计算操作,而无需考虑底层物理原理。在优化代码方面,他们得到了世界上最强大的两台超级计算机的帮助:瑞士国家超级计算中心(CSCS)的“ Piz Daint”和美国橡树岭国家实验室的“ Summit”。世界上最快的超级计算机。根据研究人员,

据报道,DaCe OMEN首次使研究人员能够在相同数量的处理器上进行十倍大小,由10,000个原子组成的晶体管的逼真的仿真,并且比原始方法快14倍。 1000个原子 总体而言,DaCe OMEN比OMEN的效率高出两个数量级:在Summit上,可以仿真速度高达140倍的逼真的晶体管,并具有每秒85.45 petaflops的持续性能,这确实可以做到。因此在4,560个计算机节点上具有双精度。计算速度的极大提高为研究人员赢得了戈登·贝尔奖。

科学家通过应用由Hoefler研究小组开发的以数据为中心的并行编程(DAPP)原理实现了这一优化。在此,目的是最小化数据传输以及因此处理器之间的通信。“这种类型的程序设计使我们不仅可以非常准确地确定在程序的各个级别上可以改进这种通信的地方,还可以确定如何在单个状态的计算范围内调整特定的计算密集型部分,即计算内核。 ,”本农说。这种多级方法可以优化应用程序,而不必每次都重写它。

还可以在不修改原始计算的情况下以及针对任何所需的计算机体系结构来优化数据移动。Hoefler说:“当我们针对目标架构优化代码时,我们只是从性能工程师的角度而不是从程序员的角度(即将科学问题转化为代码的研究人员)的角度进行更改。” 他说,这导致在计算机科学家和跨学科程序员之间建立非常简单的界面。

DaCe OMEN的应用表明,在纳米晶体管通道的末端附近产生的热量最多,并揭示了热量如何从那里扩散并影响整个系统。科学家们相信,这种用于模拟此类电子元件的新工艺具有多种潜在应用。锂电池的生产就是一个例子,当锂电池过热时,这可能会导致一些令人不快的意外。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 晶体管
    +关注

    关注

    77

    文章

    9829

    浏览量

    139396
收藏 人收藏

    评论

    相关推荐

    互补场效应晶体管的结构和作用

    , Gate-all-Around)全环绕栅极晶体管(GAAFET)等先进结构,在减少漏电、降低功耗方面虽然取得了显著成就,但进一步微缩的挑战日益显现。为了延续摩尔定律的发展趋势,并满足未来高性能计算的需求,业界正积极研发下
    的头像 发表于 01-24 10:03 2499次阅读
    互补场效应<b class='flag-5'>晶体管</b>的结构和作用

    晶体管反相的原理及应用

    晶体管反相种常见的电子电路元件,在现代电子设备中起着至关重要的作用。它通过利用晶体管的放大
    的头像 发表于 10-08 16:03 2077次阅读

    达林顿晶体管概述和作用

    达林顿晶体管(Darlington Transistor),或称达林顿对(Darlington Pair),是电子学种由两个(甚至多个)双极性晶体管(或其他类似的集成电路或分立元件
    的头像 发表于 09-29 15:42 1012次阅读

    单结晶体管和三极管有什么区别

    单结晶体管(Unipolar Junction Transistor,简称UJT)和三极(Triode,通常指双极型晶体管BJT)在电子学领域中都是重要的半导体器件,但它们在结构、工
    的头像 发表于 09-23 17:33 635次阅读

    什么是晶体管的极性

    晶体管的极性,是个在电子学领域具有基础且重要意义的概念。为了全面阐述晶体管的极性,我们需要从其定义、分类、工作原理、极性的具体表现以及在实际应用中的意义等多个方面进行深入探讨。
    的头像 发表于 09-14 15:39 1142次阅读

    通过展频进一步优化EMI

    电子发烧友网站提供《通过展频进一步优化EMI.pdf》资料免费下载
    发表于 09-04 09:32 1次下载
    通过展频<b class='flag-5'>进一步</b>优化EMI

    什么是单极型晶体管?它有哪些优势?

    单极型晶体管,也被称为单极性晶体管或场效应晶体管(Field-Effect Transistor, FET),是种在电子学中广泛使用的半导
    的头像 发表于 08-15 15:12 2550次阅读

    什么是NPN型和PNP型晶体管

    NPN型和PNP型晶体管电子学中的两种基本且重要的双极型晶体管(BJT),它们在电路设计中扮演着至关重要的角色。下面将详细阐述这两种晶体管的定义、结构、工作原理、特性、应用以及它们之
    的头像 发表于 08-15 14:58 3637次阅读

    NPN型晶体管三种状态判断方法

    NPN型晶体管作为电子学中的基础元件,具有放大、开关等多种功能。其工作状态根据基极、发射极和集电极之间的电压和电流关系可分为截止状态、放大状态和饱和状态。以下是对NPN型晶体管三种状态判断方法的详细阐述,旨在提供全面且深入的理解
    的头像 发表于 08-13 17:33 3325次阅读

    支持电子设备进一步降低功耗的第5代平面型肖特基势垒二极

    ROHM第5代平面肖特基势垒二极的效率比上代产品又提高了25%,有助于进一步提高开关电源的效率。
    的头像 发表于 08-09 15:21 1.4w次阅读
    支持<b class='flag-5'>电子</b>设备<b class='flag-5'>进一步</b>降低功耗的第5代平面型肖特基势垒二极<b class='flag-5'>管</b>

    芯片中的晶体管是怎么工作的

    1947年,当时贝尔实验室的约翰·巴丁、沃尔特·布拉顿和威廉·肖克利共同发明了点接触晶体管。这发明标志着电子学领域的次革命,因为它为电子
    的头像 发表于 07-18 14:58 1609次阅读

    美国或将进一步收紧技术对华出口

    影响人工智能加速的效能。 GAA晶体管设计因能显著增加晶体管集成度并带来功耗与性能上的优化而备受瞩目,当前仅三星电子在其最先进的3纳米制程
    的头像 发表于 06-12 18:36 309次阅读

    进一步解读英伟达 Blackwell 架构、NVlink及GB200 超级芯片

    引擎有助于诊断并预测潜在的可靠性问题,进一步巩固了系统的稳健性。 英伟达在 2024 GTC 人工智能大会上公布的技术标志着图形处理技术的变革性进展,满足广泛的行业需求,并在性能和效率方面树立
    发表于 05-13 17:16

    苹果M3芯片有多少晶体管组成

    大型应用,都能轻松应对。同时,M3芯片还采用了先进的制程工艺和架构设计,进一步提升了能效比,使得设备在保持高性能的同时,也能拥有更长的续航时间。
    的头像 发表于 03-08 17:00 1142次阅读

    苹果M3芯片有多少颗晶体管

    苹果M3芯片搭载了250亿个晶体管,相较于前代M2芯片多了50亿个晶体管。这显著的提升使得M3芯片在性能上有了更大的飞跃,无论是处理速度、图形渲染还是多任务处理,都能展现出更出色的能力。同时,M3芯片还具备统
    的头像 发表于 03-08 16:58 1285次阅读