0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Open AI推出神经元可视化库Microscope

倩倩 来源:智东西 2020-04-17 08:47 次阅读

4月14日,非营利人工智能研究组织Open AI推出神经元可视化库Microscope,有助于提升AI研究者对神经网络的理解。

现代神经网络由成千上万的神经元组成,神经活动就是神经元间的相互协作过程。解释神经元间的相互作用一直是AI研究者的一大目标。

Microscope神经元可视化库基于8个常用或重要的视觉神经网络,收集了其中每一个重要的层级和神经元,使分析神经网络的内部特征更加容易。

如同在实验室中用显微镜能更清晰地观察到细节,它也能使AI研究者更好地理解有成千上万个神经元的神经网络的结构和行为。

一、连接8大神经网络,可视化呈现神经元

8个神经网络分别是:AlexNet(2012年ImageNet挑战赛冠军),AlexNet(Places),Inception v1(又称GoogleNet,2014年ImageNet挑战赛冠军),Inception v1(Places),VGG 19,Inception v3,Inception v4,ResNet v2 50。每个神经网络中都有许多图像,在创作共用授权条款下,可以在OpenAI lucid程序库中重复使用。

Microscope模型把神经网络层当作“节点(node)”,“节点”通过“边(edge)”相互连接。每个op包含数百个“单元(unit)”,大致类似于神经元。通过特征可视化、深度梦境、数据集示例、合成调整曲线等技术实现可视化效果。

研究人员称随着时间发展,图像可能会更多。但他们也指出,使用的大多数技术只有在特定情况下才有用。比如,特征可视化只能指向“单元”,但不能指向其“父节点”。

▲神经元视觉化呈现

二、快速反馈,易于理解,能倒推出神经活动

研究人员基于已有的神经网络,连接所有的神经网络层和神经元,搭建出了Microscope。

这种方法有几大优势:

首先,Microscope将探索神经元的反馈时间从分钟级缩短为秒级。在发现一些未知特性时,这种快速反馈回路必不可少,比如可以帮助研究人员发现神经活动中的高-低频探测器

其次,建立可连接的模型和神经元使研究人员既可以立即进行查阅,也可以进行更长远的研究。当研究人员在不同机构工作时,也不会对模型和神经元产生混淆。

另外,Microscope具有可访问性。相比于其他模型,它需要的访问计算量更少。但是,Microscope仍然需要几百个GPU小时,研究人员称希望能保持它的高度可理解性。

根据OpenAI 14日发表的博文,Microscope可以通过理解神经元间的联系,倒推实现神经元间的协作。

OpenAI认为,Microscope可以为那些有兴趣探索神经网络如何工作的人提供便利,但其更重要的价值在于提供长期的、共享的神经元可视化库来促进对这些模型的长期研究。

“我们也希望神经科学等相近学科的研究人员能够从中获益,可以更容易地理解这些视觉模型的内部工作。”研究人员表示。

结语:神经网络可视化是热点,未来或有更多进步

除了Microscope以外,近年来也有其他致力于使机器学习模型的活动可视化的研究。

比如,去年秋天脸书推出了Captum,可以用可视化手段理解机器学习模型所作的决策。2019年3月,OpenAI和谷歌发布了一项使机器学习算法决策可视化的开源技术。后来,谷歌又在2019年10月份发布了TensorBoard.dev,可以使机器学习模型的训练过程可视化。

通过各家公司的不断钻研,神经网络可视化技术将在未来继续进步,让我们拭目以待。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4769

    浏览量

    100687
  • 可视化
    +关注

    关注

    1

    文章

    1193

    浏览量

    20931
  • 神经元
    +关注

    关注

    1

    文章

    363

    浏览量

    18449
  • OpenAI
    +关注

    关注

    9

    文章

    1074

    浏览量

    6471
收藏 人收藏

    评论

    相关推荐

    神经元芯片的主要特点和优势

    神经元芯片,又称神经芯片或神经元网络芯片,是一种专为实现网络通信和控制功能而设计的先进半导体芯片。这类芯片的设计灵感部分源自于对人脑神经元网络结构和信息处理方式的模拟,尽管其实现方式与
    的头像 发表于 07-12 16:42 1099次阅读

    神经元是什么?神经元神经系统中的作用

    神经元,又称神经细胞,是神经系统的基本结构和功能单位。它们负责接收、整合、传导和传递信息,从而参与和调控神经系统的各种活动。神经元在形态上高
    的头像 发表于 07-12 11:49 1154次阅读
    <b class='flag-5'>神经元</b>是什么?<b class='flag-5'>神经元</b>在<b class='flag-5'>神经</b>系统中的作用

    人工神经元模型的基本构成要素

    人工神经元模型是人工智能领域中的一个重要概念,它模仿了生物神经元的工作方式,为机器学习和深度学习提供了基础。本文将介绍人工神经元模型的基本构成要素。 神经元的基本概念
    的头像 发表于 07-11 11:28 1213次阅读

    人工神经元模型的基本原理是什么

    人工神经元模型是人工智能领域中的一个重要概念,它模仿了生物神经系统中的神经元行为,为机器学习和深度学习提供了基础。 一、人工神经元模型的历史 神经
    的头像 发表于 07-11 11:26 713次阅读

    人工神经元模型由哪两部分组成

    人工神经元模型是深度学习、机器学习和人工智能领域的基础,它模仿了生物神经元的工作原理,为构建复杂的神经网络提供了基础。 一、人工神经元模型的起源 生物
    的头像 发表于 07-11 11:24 842次阅读

    生物神经元模型包含哪些元素

    生物神经元模型是神经科学和人工智能领域中的一个重要研究方向,它旨在模拟生物神经元的工作原理,以实现对生物神经系统的理解和模拟。 神经元的基本
    的头像 发表于 07-11 11:21 972次阅读

    人工智能神经元的基本结构

    人工智能神经元的基本结构是一个复杂而深入的话题,涉及到计算机科学、数学、神经科学等多个领域的知识。 引言 人工智能(Artificial Intelligence,简称AI)是计算机科学的一个分支
    的头像 发表于 07-11 11:19 1301次阅读

    人工神经元由哪些部分组成

    人工神经元是深度学习、神经网络和机器学习领域的核心组件之一。 1. 引言 在深入讨论人工神经元之前,我们需要了解其在人工智能领域的重要性。人工神经元是模拟人脑
    的头像 发表于 07-11 11:17 607次阅读

    人工神经元模型的基本原理及应用

    人工神经元模型是人工智能和机器学习领域的一个重要概念,它模仿了生物神经元的工作方式,为计算机提供了处理信息的能力。 一、人工神经元模型的基本原理 生物神经元的结构和功能 生物
    的头像 发表于 07-11 11:15 822次阅读

    人工神经元模型的三要素是什么

    人工神经元模型是人工智能和机器学习领域中非常重要的概念之一。它模仿了生物神经元的工作方式,通过数学和算法来实现对数据的处理和学习。 一、人工神经元模型的基本概念 1.1 生物神经元与人
    的头像 发表于 07-11 11:13 865次阅读

    神经元的分类包括哪些

    神经元神经系统的基本功能单位,它们通过电信号和化学信号进行信息传递和处理。神经元的分类非常复杂,可以根据不同的标准进行分类。 一、神经元的基本概念 1.1
    的头像 发表于 07-03 11:36 1182次阅读

    神经元的结构及功能是什么

    神经元神经系统的基本结构和功能单位,它们通过电信号和化学信号进行信息传递和处理。神经元的结构和功能非常复杂,涉及到许多不同的方面。 一、神经元的形态结构
    的头像 发表于 07-03 11:33 1194次阅读

    神经元的基本作用是什么信息

    神经元神经系统的基本功能单位,它们在大脑、脊髓和周围神经系统中发挥着至关重要的作用。神经元的基本作用是接收、处理和传递信息。本文将详细介绍神经元
    的头像 发表于 07-03 11:29 861次阅读

    神经元的信息传递方式是什么

    神经元神经系统的基本单位,它们通过电信号和化学信号的方式进行信息传递。 神经元的信息传递方式 神经元的结构和功能 神经元
    的头像 发表于 07-03 11:27 1198次阅读

    神经元神经网络的区别与联系

    在人工智能和机器学习的领域中,神经元神经网络是两个至关重要的概念。虽然它们都与人脑中的神经系统有着密切的联系,但在实际应用和理论研究中,它们各自扮演着不同的角色。本文旨在深入探讨神经元
    的头像 发表于 07-01 11:50 904次阅读