0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

神经网络为何无法实现人类的推理并产生意识?

倩倩 来源:知识就是力量 2020-04-17 15:16 次阅读

前不久,据华尔街日报报道, Uber在一宗无人车的测试过程中,造成了一名行人死亡的严重交通事故,除此之外,环顾我们身边,苹果手机的虚拟个人助理Siri有时会无法识别我们在说什么;某些人脸识别支付应用也存在着一些安全问题。这些事件反映出来的一个情况是,目前的AI似乎并没有足够的智能,甚至并无法很好地处理从外界获取的信息

人脑中的神经网络是一个非常复杂的组织,成人的大脑中约有1000亿个神经元,人类至今仍在探索人脑的工作原理。而人们通过对生物神经元的研究和理解,构建了一个模拟人脑的计算模型:人工神经网络!

那么,人工神经网络是什么?人类通过构造神经网络,能否给AI赋能,使之自我进化?

什么是神经网络?

简单来说,神经网络是一种模拟人脑的计算架构;利用神经网络进行机器学习,则让计算机不再只是执行命令的机器,而是具有了一定程度上分析判断的能力。当然,这个能力也离不开海量的数据和高超的计算能力。

一个经典的神经网络一般包含三个层次:输入层、隐藏层和输出层。而这三个层分别模仿的是神经元的树突、轴突和轴突末梢。输入层接收外部的输入数据,比如图片、文本、语音等,通过,隐层抽象数据的通用模式,进而通过输出层输出模型的计算的结果。

历史上,科学家还设计过多层的神经网络,每一层都会对前一层传来的结果进行再次加工,目的是模拟出一种“深思熟虑”的感觉,但最后发现结果准确度并没有提高,有的时候还会陷入误区,就像人容易朝着一个思路越陷越深,最后钻牛角尖了一样。随着技术进步,让这一问题得到改善。现在,最厉害的神经网络技术不但已经非常接近人脑,还排除了很多人脑自身存在的低效的思维方式。

柯洁在与AlphaGo大战后,在接受腾讯体育记者的采访时表示,“我也不敢想象,它居然可以把棋下得那么强硬,撑得那么满,好像好多块棋扭在一起,那是人类擅长发挥的地方了。跟它下棋会发现它处理得好像比我们人类还好很多,其实那一刻是很绝望的。甚至是那些研发它的人也不知道是怎么做到这一点的,研发它的人是下不过它的,很多人甚至不懂棋,居然能创造出这么一个怪物。所以,我唯一能感受到的是它对形势的乐观和自信,而且是绝对的乐观和自信,这一点人类是没有的。再自信也不会像它那么自信,无论你验证多少次,它都是不可战胜的。”

神经网络为何无法实现人类的推理并产生意识?

机器人是否具有意识”一直是人们所争论的焦点之一,而在这其中,人工神经网络的技术发展起着重要的作用。对当前的人工神经网络而言,解决某些特定场景的问题,特别具有优势,但解决人们习以为常的问题却非常困难。比如,MIT媒体实验室研究员joy buolamwini研究文章称,人脸识别技术针对不同种族的准确率差异巨大,其中针对黑人女性的错误率高达35%!

中国工程院院士郑南宁指出,人工智能研究的一个重要方向,是借鉴认知科学、计算神经科学的研究成果,使计算机通过直觉推理和经验学习,将自身引导到更高的层次。然而,人脑对真实世界的理解、非完整信息的处理、复杂时空的任务处理能力是当前机器学习无法比拟的,还有人的大脑神经网络结构的可塑性,以及人脑在非认知因素和认知功能之间的相互作用,都是很难以形式化、公式化的描述。

神经网络是怎么应用到各领域的?

神经网络虽然缺乏人类解决问题的强大理解能力,但却可以通过海量的计算从大量的数据中找到一些通用的模式。因此它们作为辅助工具,已经在各行各业,尤其是在多媒体领域体现了自身的价值。

手写数字识别应该是神经网络最早的商业应用之一。大部分的人都可以轻松识别下图中的手写数字,但要设计一套计算机程序来识别这些数字,就会发现视觉模式识别的难度。而神经网络的思想是,利用大量的手写数字,即训练样本,从中自动学习到识别各个数字的规则。而且随着样本数量的增加,神经网络可以学习到更多信息,从而可以进一步提升准确度。目前最好的商用神经网络已经足够好到能被银行用来处理支票,以及被邮局用来识别地址。

MNIST手写数字数据集一览

手写数字或许有些过于简单,那么使用神经网络发现地外行星,就更能显示它的能力了。谷歌和得克萨斯大学奥斯丁分校合作,利用上万颗被标记的恒星数据,训练了一个卷积神经网络,训练结果显示,神经网络判别行星的准确率高达96%。然后,研究人员让这个神经网络处理2009年到2013年观测到的670颗恒星的数据集,通过微小的特征变化,发现了两个星系存在地外行星的可能性非常高。经过研究人员的验证,确认了这两颗新的行星。

神经网络发现的开普勒-90星系与太阳系的对比

近日,美国FDA首次批准了用于检测糖尿病视网膜病变的人工智能产品:IDx-DR。这次FDA评估了来自10个初级卫生保健点的900名糖尿病患者的视网膜临床研究图像数据,IDx-DR能够正确识别轻度以上糖尿病性视网膜病变的准确率为87.4%,而正确识别没有轻度以上的糖尿病性视网膜病变的准确率为89.5%。

在目前比较火热的无人车领域,虽然各大厂商还在研究测试通用的解决方案,但在一些具体的案例上已经有了一些成果。图森未来使用自主研发的深度学习感知算法,能够做到让摄像头像人眼一样实时感知行车周边环境,检测和跟踪视野中的各种物体,能够对可视场景进行像素级的解读。凭借视觉高精度定位和多传感器融合技术,能够实现高速公路上的无人驾驶,帮助货运企业降低成本,加快货运周转。

总之,神经网络在不断地影响着生活、医疗和出行,但科研界对它有更多理性的看法。伯克利大学机器学习专家Michael I. Jordan认为,计算机科学仍然是最首要的学科,人工智能还无法取而代之,而神经网络只是该领域中仍在发展中的一个部份。

“现在要问神经网络会把我们带多远还为时尚早。”最看好神经网络发展前景的专家题讨论成员——OpenAI共同创办人兼研究总监Ilya Sutskever表示,“这些模型很难理解。例如,将机器视觉作为一种程序真的很不可思议,但现在我们对不可思议的问题都能提出不可思议的解决方案了。”

无论如何,我们目前正处理人工智能对社会的变革过程中,它们已经从实验室过渡到了商业部署。无疑,广泛的工业领域将受到庞大的数据和数据分析功能的深远影响。尽管神经网络还无法实现基本的人类推理和理解力,但它们将是建构人工智能漫漫长路上所用到的重要工具之一。

虽然现在神经网络还无法产生意识,但随着信息科学、认知科学、神经生物学、心理学等前沿学科和交叉学科的深度融合与不断发展,人工智能将会迎来新的发展高潮。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4771

    浏览量

    100765
  • 神经元
    +关注

    关注

    1

    文章

    363

    浏览量

    18450
  • 机器学习
    +关注

    关注

    66

    文章

    8418

    浏览量

    132630
收藏 人收藏

    评论

    相关推荐

    国产芯上运行TinyMaxi轻量级的神经网络推理库-米尔基于芯驰D9国产商显板

    本篇测评由优秀测评者“短笛君”提供。本文将介绍基于米尔电子MYD-YD9360商显板(米尔基于芯驰D9360国产开发板)的TinyMaxi轻量级的神经网络推理库方案测试。 算力测试TinyMaix
    发表于 08-09 18:26

    神经网络专用硬件实现的方法和技术

    神经网络专用硬件实现是人工智能领域的一个重要研究方向,旨在通过设计专门的硬件来加速神经网络的训练和推理过程,提高计算效率和能效比。以下将详细介绍神经
    的头像 发表于 07-15 10:47 1135次阅读

    递归神经网络实现方法

    递归神经网络(Recursive Neural Network,简称RNN)是一种特殊类型的神经网络,其特点在于能够处理具有层次或树状结构的数据,通过递归的方式对这些数据进行建模。与循环神经
    的头像 发表于 07-10 17:02 329次阅读

    如何在FPGA上实现神经网络

    可编程门阵列(FPGA)作为一种灵活、高效的硬件实现方式,为神经网络的加速提供了新的思路。本文将从FPGA实现神经网络的基本原理、关键技术、实现
    的头像 发表于 07-10 17:01 1991次阅读

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及未来发展等多个方面,详细阐述BP
    的头像 发表于 07-10 15:20 1070次阅读

    全连接前馈神经网络与前馈神经网络的比较

    Neural Network, FCNN)和前馈神经网络(Feedforward Neural Network, FNN)因其结构简单、易于理解和实现,成为了研究者们关注的热点。本文将从概念、模型结构、优缺点以及应用场景等方面,对全连接前馈
    的头像 发表于 07-09 10:31 8910次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
    的头像 发表于 07-05 09:52 577次阅读

    递归神经网络是循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 759次阅读

    卷积神经网络实现原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络实现原理、结构
    的头像 发表于 07-03 10:49 550次阅读

    bp神经网络和卷积神经网络区别是什么

    结构、原理、应用场景等方面都存在一定的差异。以下是对这两种神经网络的比较: 基本结构 BP神经网络是一种多层前馈神经网络,由输入层、隐藏层和输出层组成。每个神经元之间通过权重连接,
    的头像 发表于 07-03 10:12 1184次阅读

    卷积神经网络训练的是什么

    、训练过程以及应用场景。 1. 卷积神经网络的基本概念 1.1 卷积神经网络的定义 卷积神经网络是一种前馈深度学习模型,其核心思想是利用卷积操作提取输入数据的局部特征,通过多层结构进
    的头像 发表于 07-03 09:15 409次阅读

    卷积神经网络的原理与实现

    1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 卷积神经网络是一种前馈神经网络,其
    的头像 发表于 07-02 16:47 576次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 3952次阅读

    神经网络架构有哪些

    神经网络架构是机器学习领域中的核心组成部分,它们模仿了生物神经网络的运作方式,通过复杂的网络结构实现信息的处理、存储和传递。随着深度学习技术的不断发展,各种
    的头像 发表于 07-01 14:16 713次阅读

    神经网络的基本原理

    神经网络,作为人工智能领域的一个重要分支,其基本原理和运作机制一直是人们研究的热点。神经网络的基本原理基于对人类大脑神经元结构和功能的模拟,通过大量的
    的头像 发表于 07-01 11:47 1149次阅读