0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络 物体检测 YOLOv2

倩倩 来源:三姐的哥 2020-04-17 15:51 次阅读

继2015的YOLO后,2016年作者对YOLO升级到YOLO2,另外一个版本YOLO9000是基于wordtree跨数据集达到检测9000个分类,卷积层模型称为darknet-19,达到速度和效果的双提升,文章里充满了作者的自豪,也值得自豪;

作者正视了YOLO的两个大问题:回归框不精准和召回不够;一般的解决思路都是把网络加深加宽,不过本文不屑,作者反而要通过优化网络学习在准确率不降的情况下提升精度和召回!

升级点

Batch Normalization:每个卷积层加了BN,正则都不要了,droupout也省了,过拟合也没了,效果还好了,+2%mAP;

High Resolution Classifier - 高分辨率分类:模型训练时经典做法都是先在ImageNet上pre-train,然而ImageNet上的图片是低分辨率小于256*256的,而要检测的图片是高分辨率448*448的,这样模型需要同时在高分辨的图片上做fine-tune和检测,所以作者提出了三步骤 1) 在ImageNet低分辨率上pre-train;2) 在高分辨率数据集上fine-tune;3) 在高分辨率数据集上检测;使得模型更容易学习,+4%mAP

Convolution with Anchor Boxer - 加Anchor机制:YOLO是通过最后的全连接层直接预估绝对坐标,而FasterRCNN是通过卷积层预估相对坐标,作者认为这样更容易学习,因此YOLOv2去掉了全连接层,在最后一层卷积层下采样后用Anchor,yolo有7*7*2 = 98个框,而YOLOv2有超过1k的anchor,最终效果上虽然mAP略有下降3个千分点,但是召回提升7个百分点,值了!

Dimension Clusters - 维度聚类: Anchor的尺寸faster rcnn里人工选定的,YOLOv2通过k-mean聚类的方法,将训练数据里gt的框进行聚类,注意这里不能直接用欧式距离,大框会比小框影响大,我们的目标是IOU,因此距离为: d(box, centroid) = 1 IOU(box, centroid);下图是结果,左图是k和IOU的trand-off,右图是5个中心的框尺寸,明显看出和人工指定的差异很大;

Direct location prediction - 直接预测位置:直接预测x,y会导致模型训练不稳定,本文预测如下tx,ty,tw,th,to,通过sigmolid归一化到(0,1),结合dimension clusters,+5%mAP

Fine-Grained Freture - 细粒度特征:引入passthrough layer,将低维度特征传递给高维度,类似于resnet的shortcut,+1%mAP;

Multi-Scale Training - 多尺度训练:这里的多尺度是图片的尺寸,多了迫使模型适应更大范围的尺寸,每隔一定的epoch就强制改变输入图片的尺寸;

效果

如下是在VOC数据集上效率(每秒处理帧数)和效果(mAP)空间里不同算法的变现,其中YOLOv2为蓝色,有不同的trade-off,效率和效果都超过已有的方法;

如下是更多的实验结果:

如下是COCO上的效果,看得出COCO数据集还是很难的,小物体上YOLO2依然是差一些;

YOLO9000: Better, Faster, Stronger

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4615

    浏览量

    92972
  • 数据集
    +关注

    关注

    4

    文章

    1208

    浏览量

    24717
  • voc
    voc
    +关注

    关注

    0

    文章

    105

    浏览量

    15690
收藏 人收藏

    评论

    相关推荐

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统
    的头像 发表于 11-15 14:53 495次阅读

    卷积神经网络有何用途 卷积神经网络通常运用在哪里

    和应用场景。 图像识别 图像识别是卷积神经网络最广泛的应用之一。CNN能够自动学习图像中的特征,实现对图像的分类、识别和分析。以下是一些具体的应用场景: 1.1 物体识别:CNN可以识别图像中的
    的头像 发表于 07-11 14:43 2530次阅读

    BP神经网络卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器学习领域
    的头像 发表于 07-10 15:24 1579次阅读

    循环神经网络卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1318次阅读

    卷积神经网络的实现原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 10:49 561次阅读

    bp神经网络卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络
    的头像 发表于 07-03 10:12 1211次阅读

    卷积神经网络分类方法有哪些

    卷积神经网络(Convolutional Neural Networks,CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等计算机视觉任务。本文将详细介绍卷积
    的头像 发表于 07-03 09:40 479次阅读

    卷积神经网络的基本结构和工作原理

    和工作原理。 1. 引言 在深度学习领域,卷积神经网络是一种非常重要的模型。它通过模拟人类视觉系统,能够自动学习图像中的特征,从而实现对图像的识别和分类。与传统的机器学习方法相比,CNN具有更强的特征提取能力,能够处理更复杂的数据。 2
    的头像 发表于 07-03 09:38 661次阅读

    cnn卷积神经网络分类有哪些

    卷积神经网络(CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等领域。本文将详细介绍CNN在分类任务中的应用,包括基本结构、关键技术、常见网络架构以及实际应用案例。
    的头像 发表于 07-03 09:28 633次阅读

    卷积神经网络训练的是什么

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 09:15 426次阅读

    卷积神经网络的基本概念和工作原理

    卷积神经网络(Convolutional Neural Network, CNN)是深度学习中非常重要的一类神经网络,主要用于图像识别、图像分类、物体检测等计算机视觉任务。CNN以其独
    的头像 发表于 07-02 18:17 3796次阅读

    卷积神经网络的原理与实现

    1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 卷积神经网络是一种前馈
    的头像 发表于 07-02 16:47 605次阅读

    卷积神经网络的基本结构及其功能

    。 引言 深度学习是机器学习的一个分支,它通过模拟人脑神经网络的结构和功能,实现对数据的自动学习和特征提取。卷积神经网络是深度学习中的一种重要模型,它通过卷积操作和池化操作,有效地提取
    的头像 发表于 07-02 14:45 2270次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积神经网络的原
    的头像 发表于 07-02 14:44 669次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 4184次阅读