0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用PyTorch提取CNNs图像特征

汽车玩家 来源:人工智能遇见磐创 作者:人工智能遇见磐创 2020-05-05 08:52 次阅读

目录

简要介绍PyTorch、张量和NumPy

为什么选择卷积神经网络(CNNs)?

识别服装问题

使用PyTorch实现CNNs

1.简要介绍PyTorch、张量和NumPy

让我们快速回顾一下第一篇文章中涉及的内容。我们讨论了PyTorch和张量的基础知识,还讨论了PyTorch与NumPy的相似之处。

PyTorch是一个基于python的库,提供了以下功能:

用于创建可序列化和可优化模型的TorchScript

以分布式训练进行并行化计算

动态计算图,等等

PyTorch中的张量类似于NumPy的n维数组,也可以与gpu一起使用。在这些张量上执行操作几乎与在NumPy数组上执行操作类似。这使得PyTorch非常易于使用和学习。

在本系列的第1部分中,我们构建了一个简单的神经网络来解决一个案例研究。使用我们的简单模型,我们在测试集中获得了大约65%的基准准确度。现在,我们将尝试使用卷积神经网络来提高这个准确度。

2.为什么选择卷积神经网络(CNNs)?

在我们进入实现部分之前,让我们快速地看看为什么我们首先需要CNNs,以及它们是如何工作的。

我们可以将卷积神经网络(CNNs)看作是帮助从图像中提取特征的特征提取器。

在一个简单的神经网络中,我们把一个三维图像转换成一维图像,对吧?让我们看一个例子来理解这一点:

使用PyTorch提取CNNs图像特征

你能认出上面的图像吗?这似乎说不通。现在,让我们看看下面的图片:

我们现在可以很容易地说,这是一只狗。如果我告诉你这两个图像是一样的呢?相信我,他们是一样的!唯一的区别是第一个图像是一维的,而第二个图像是相同图像的二维表示

空间定位

人工神经网络也会丢失图像的空间方向。让我们再举个例子来理解一下:

使用PyTorch提取CNNs图像特征

你能分辨出这两幅图像的区别吗?至少我不能。由于这是一个一维的表示,因此很难确定它们之间的区别。现在,让我们看看这些图像的二维表示:

在这里,图像某些定位已经改变,但我们无法通过查看一维表示来识别它。

这就是人工神经网络的问题——它们失去了空间定位。

大量参数

神经网络的另一个问题是参数太多。假设我们的图像大小是28283 -所以这里的参数是2352。如果我们有一个大小为2242243的图像呢?这里的参数数量为150,528。

这些参数只会随着隐藏层的增加而增加。因此,使用人工神经网络的两个主要缺点是:

丢失图像的空间方向

参数的数量急剧增加

那么我们如何处理这个问题呢?如何在保持空间方向的同时减少可学习参数?

这就是卷积神经网络真正有用的地方。CNNs有助于从图像中提取特征,这可能有助于对图像中的目标进行分类。它首先从图像中提取低维特征(如边缘),然后提取一些高维特征(如形状)。

我们使用滤波器从图像中提取特征,并使用池技术来减少可学习参数的数量。

在本文中,我们不会深入讨论这些主题的细节。如果你希望了解滤波器如何帮助提取特征和池的工作方式,我强烈建议你从头开始学习卷积神经网络的全面教程

3.问题:识别服装

理论部分已经铺垫完了,开始写代码吧。我们将讨论与第一篇文章相同的问题陈述。这是因为我们可以直接将我们的CNN模型的性能与我们在那里建立的简单神经网络进行比较。

你可以从这里下载“识别”Apparels问题的数据集。

https://datahack.analyticsvidhya.com/contest/practice-problem-identify-the-apparels/?utmsource=blog&utmmedium=building-image-classification-models-cnn-pytorch

让我快速总结一下问题陈述。我们的任务是通过观察各种服装形象来识别服装的类型。我们总共有10个类可以对服装的图像进行分类:

使用PyTorch提取CNNs图像特征

数据集共包含70,000张图像。其中60000张属于训练集,其余10000张属于测试集。所有的图像都是大小(28*28)的灰度图像。数据集包含两个文件夹,一个用于训练集,另一个用于测试集。每个文件夹中都有一个.csv文件,该文件具有图像的id和相应的标签;

准备好开始了吗?我们将首先导入所需的库:

加载数据集

现在,让我们加载数据集,包括训练,测试样本:

该训练文件包含每个图像的id及其对应的标签

另一方面,测试文件只有id,我们必须预测它们对应的标签

样例提交文件将告诉我们预测的格式

我们将一个接一个地读取所有图像,并将它们堆叠成一个数组。我们还将图像的像素值除以255,使图像的像素值在[0,1]范围内。这一步有助于优化模型的性能。

让我们来加载图像:

如你所见,我们在训练集中有60,000张大小(28,28)的图像。由于图像是灰度格式的,我们只有一个单一通道,因此形状为(28,28)。

现在让我们研究数据和可视化一些图像:

使用PyTorch提取CNNs图像特征

以下是来自数据集的一些示例。我鼓励你去探索更多,想象其他的图像。接下来,我们将把图像分成训练集和验证集。

创建验证集并对图像进行预处理

我们在验证集中保留了10%的数据,在训练集中保留了10%的数据。接下来将图片和目标转换成torch格式:

同样,我们将转换验证图像:

我们的数据现在已经准备好了。最后,是时候创建我们的CNN模型了!

4.使用PyTorch实现CNNs

我们将使用一个非常简单的CNN架构,只有两个卷积层来提取图像的特征。然后,我们将使用一个完全连接的Dense层将这些特征分类到各自的类别中。

让我们定义一下架构:

现在我们调用这个模型,定义优化器和模型的损失函数:

使用PyTorch提取CNNs图像特征

这是模型的架构。我们有两个卷积层和一个线性层。接下来,我们将定义一个函数来训练模型:

最后,我们将对模型进行25个epoch的训练,并存储训练和验证损失:

使用PyTorch提取CNNs图像特征

可以看出,随着epoch的增加,验证损失逐渐减小。让我们通过绘图来可视化训练和验证的损失:

使用PyTorch提取CNNs图像特征

啊,我喜欢想象的力量。我们可以清楚地看到,训练和验证损失是同步的。这是一个好迹象,因为模型在验证集上进行了很好的泛化。

让我们在训练和验证集上检查模型的准确性:

训练集的准确率约为72%,相当不错。让我们检查验证集的准确性:

正如我们看到的损失,准确度也是同步的-我们在验证集得到了72%的准确度。

为测试集生成预测

最后是时候为测试集生成预测了。我们将加载测试集中的所有图像,执行与训练集相同的预处理步骤,最后生成预测。

所以,让我们开始加载测试图像:

现在,我们将对这些图像进行预处理步骤,类似于我们之前对训练图像所做的:

最后,我们将生成对测试集的预测:

用预测替换样本提交文件中的标签,最后保存文件并提交到排行榜:

你将在当前目录中看到一个名为submission.csv的文件。你只需要把它上传到问题页面的解决方案检查器上,它就会生成分数。链接:https://datahack.analyticsvidhya.com/contest/practice-problem-identify-the-apparels/?utmsource=blog&utmmedium=building-image-classification-models-cnn-pytorch

我们的CNN模型在测试集上给出了大约71%的准确率,这与我们在上一篇文章中使用简单的神经网络得到的65%的准确率相比是一个很大的进步。

5.结尾

在这篇文章中,我们研究了CNNs是如何从图像中提取特征的。他们帮助我们将之前的神经网络模型的准确率从65%提高到71%,这是一个重大的进步。

你可以尝试使用CNN模型的超参数,并尝试进一步提高准确性。要调优的超参数可以是卷积层的数量、每个卷积层的滤波器数量、epoch的数量、全连接层的数量、每个全连接层的隐藏单元的数量等。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • python
    +关注

    关注

    56

    文章

    4781

    浏览量

    84440
  • pytorch
    +关注

    关注

    2

    文章

    803

    浏览量

    13143
收藏 人收藏

    评论

    相关推荐

    高光谱成像的黄瓜病虫害识别和特征波长提取方法

    高光谱成像的黄瓜病虫害识别和特征波长提取方法黄瓜霜霉病和斑潜蝇是制约黄瓜产业发展的严重病虫害。
    的头像 发表于 08-12 15:36 442次阅读
    高光谱成像的黄瓜病虫害识别和<b class='flag-5'>特征</b>波长<b class='flag-5'>提取</b>方法

    pytorch怎么在pycharm中运行

    第一部分:PyTorch和PyCharm的安装 1.1 安装PyTorch PyTorch是一个开源的机器学习库,用于构建和训练神经网络。要在PyCharm中使用PyTorch,首先需
    的头像 发表于 08-01 16:22 1209次阅读

    图像识别算法的核心技术是什么

    图像识别算法是计算机视觉领域的一个重要研究方向,其目标是使计算机能够像人类一样理解和识别图像中的内容。图像识别算法的核心技术包括以下几个方面: 特征提取
    的头像 发表于 07-16 11:02 566次阅读

    图像识别技术的原理是什么

    值化、滤波、边缘检测等操作。这些操作可以提高图像的质量,减少噪声,突出图像特征,为后续的特征提取和分类器设计提供基础。 1.1 去噪 去噪是去除
    的头像 发表于 07-16 10:46 823次阅读

    基于PyTorch的卷积核实例应用

    在深度学习和计算机视觉领域,卷积操作是一种至关重要的技术,尤其在图像处理和特征提取方面发挥着核心作用。PyTorch作为当前最流行的深度学习框架之一,提供了强大的张量操作功能和灵活的API,使得实现
    的头像 发表于 07-11 15:19 389次阅读

    卷积神经网络通常用来处理什么

    感知、权重共享(或特征共享)以及空间或时间上的下采样(池化),来有效地从原始像素数据中自动提取高层次的特征表示。 具体来说,卷积神经网络在以下领域有广泛应用: 图像识别 :CNN 是
    的头像 发表于 07-11 14:51 520次阅读

    卷积神经网络的应用场景及优缺点

    1.1 卷积神经网络的定义 卷积神经网络是一种深度学习模型,它通过模拟人类视觉系统的工作方式,对输入数据进行特征提取和分类。与传统的神经网络相比,CNNs具有更好的特征学习能力和泛化能力。 1.2 卷积神经网络的发展历程
    的头像 发表于 07-11 14:45 541次阅读

    pytorch中有神经网络模型吗

    当然,PyTorch是一个广泛使用的深度学习框架,它提供了许多预训练的神经网络模型。 PyTorch中的神经网络模型 1. 引言 深度学习是一种基于人工神经网络的机器学习技术,它在图像识别、自然语言
    的头像 发表于 07-11 09:59 634次阅读

    计算机视觉怎么给图像分类

    图像分类是计算机视觉领域中的一项核心任务,其目标是将输入的图像自动分配到预定义的类别集合中。这一过程涉及图像特征提取特征表示以及分类器的
    的头像 发表于 07-08 17:06 501次阅读

    tensorflow和pytorch哪个更简单?

    PyTorch更简单。选择TensorFlow还是PyTorch取决于您的具体需求和偏好。如果您需要一个易于使用、灵活且具有强大社区支持的框架,PyTorch可能是一个更好的选择。如果您需要一个在
    的头像 发表于 07-05 09:45 772次阅读

    卷积神经网络在图像识别中的应用

    卷积操作 卷积神经网络的核心是卷积操作。卷积操作是一种数学运算,用于提取图像中的局部特征。在图像识别中,卷积操作通过滑动窗口(或称为滤波器、卷积核)在输入
    的头像 发表于 07-02 14:28 920次阅读

    PyTorch中激活函数的全面概览

    为了更清晰地学习Pytorch中的激活函数,并对比它们之间的不同,这里对最新版本的Pytorch中的激活函数进行了汇总,主要介绍激活函数的公式、图像以及使用方法,具体细节可查看官方文档。
    的头像 发表于 04-30 09:26 497次阅读
    <b class='flag-5'>PyTorch</b>中激活函数的全面概览

    如何提取、匹配图像特征

    我们习惯从图像中选取比较有代表性的点,然后,在此基础上,讨论相机位姿估计问题,以及这些点的定位问题。 在经典 SLAM 模型中,把它们称为路标,而在视觉 SLAM 中,路标则是指图像特征(Features)。
    的头像 发表于 04-19 11:41 605次阅读

    微美全息(NASDAQ:WIMI)探索全局-局部特征自适应融合网络框架在图像场景分类中的创新运用

    面临着许多挑战,如复杂的场景等。然而,现有的图像场景分类方法往往只关注全局或局部特征提取,而忽略了全局和局部特征之间的互补关联。为了解决这些问题,微美全息(NASDAQ:WIMI)不
    的头像 发表于 01-05 16:08 355次阅读
    微美全息(NASDAQ:WIMI)探索全局-局部<b class='flag-5'>特征</b>自适应融合网络框架在<b class='flag-5'>图像</b>场景分类中的创新运用

    OpenCV4图像分析之BLOB特征分析

    BLOB是图像中灰度块的一种专业称呼,更加变通一点的可以说它跟我们前面二值图像分析的联通组件类似,通过特征提取实现常见的各种灰度BLOB对象组件检测与分离。使用该检测器的时候,可以根据需要输入不同参数,得到的结果跟输入的参数息息
    的头像 发表于 12-28 12:28 1218次阅读
    OpenCV4<b class='flag-5'>图像</b>分析之BLOB<b class='flag-5'>特征</b>分析