0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

纳米尺度下的光和物质强耦合系统的研究

牵手一起梦 来源:PhotoniX 作者:佚名 2020-04-21 17:58 次阅读

在物理光学里,光和物质的相互作用的基础研究是我们得以发展新型技术的基础。所谓不仅知其然,而且要知其所以然——既要知道事情的表面现象(观测到的现象),也要了解事情的本质和它之所以产生的原因。

比如量子发射体是研制新光源(包括激光、发光二极管、以及在量子技术领域的单光子源)的基础,它们可以是在激发态的原子、非激发态的原子或者量子点,它们的发光特性不仅仅和自身状态有关系,也和周围的电磁场环境有关系。

当这个量子发射体处于一个可以限制光能的系统里的时候(比方说光学腔或者等离子纳米腔),它释放的光子可以在消失(dissipate)之前重新被该量子体吸收。当这种光和代表物质的量子发射体之间这种能量耦合比它们自身的耗散过程快的时候,我们称之为光和物质的强相互作用(Strong light-matter interactions),这种释放光子-再吸收光子会周期性地出现,我们称一个周期为拉比周期(Rabi cycle)。

近期,西湖大学仇旻教授课题组和新西兰奥塔哥大学丁伯阳博士合作,联合浙江大学、北京理工大学相关团队, 开展了一系列关于“等离子谐振和量子辐射点强耦合”的工作。

具体来说,他们把量子辐射点(发光原子分子激子等)嵌入到纳米尺度的光学腔里,观察到光子和辐射点在常温下的快速能量交换以及很多有趣的物理特性。这些工作为诸多重要的应用,比如单光子开关和纳米激光器,提供了必要的理论和实践基础。

背景介绍

谐振腔是非常重要的光学器件。具体来说,科学家们利用反射镜的组合把光子限制在一定空间里,让光子在镜子中来回反射,从而增大光场的强度,延长光场的存在时间,并且可以控制光子的谐振频率。如果我们把一些量子辐射点(例如分子,原子,激子,离子等等)嵌入到谐振频率相同的光学腔中(图1a),光子和辐射点就会发生快速的能量交换。当这种交换速度超过了系统自身的损耗率,光子和辐射点就会形成新的光-物质混合态,体现为频谱上的能级劈裂(图1b)。我们把这个过程称之为强耦合过程,又叫光和物质强相互作用,而相关研究被称为腔-量子电动力学 [cavity-quantum electrodynamics (cavity-QED)]。

图1 (a) 光学腔和量子辐射点集成组合的示意图;(b) 光学腔和量子发光点强耦合的示意能级图,呈现出分裂的能级;分裂能级大小用真空拉比劈裂(ħωVR)来表征。

强耦合系统激发了科学家们的极大兴趣,因为这不仅可以让我们更深入的研究开放系统中的量子力学,比如测量引起的退相干效应,更重要的是可以让我们实现对量子态的有效操控,为一系列的重要应用提供了理论和实践基础,比如量子计算机,量子编码,单光子非线性,以及单原子激光器等等等等。因为这一研究的重要性,2012年的诺贝尔物理学奖授予了Serge Haroche以表彰他在cavity-QED研究上的杰出贡献。

关键技术

目前关于强耦合系统的相关研究大多停留在实验室阶段。为了减少系统损耗,人们传统上会把整个耦合系统放到超低温下测量(接近绝对零度,-273℃),这无疑极大的提高了开发成本和研究难度。为了解决这一问题,科学家们开始尝试利用等离子谐振腔(或称为纳米光学腔)在常温下实现强耦合效应。具体来说,等离子谐振腔是基于特殊设计的贵金属纳米结构。在这种结构中,金属的导带电子会随着外部光照发生集体振动,也即局域等离子谐振[图2(a)]。这种谐振把光能压缩限制在一个非常小的体积(V)里面。例如图2(b)所示,光能可以被压缩到单个贵金属纳米颗粒和金属薄膜之间的间隙当中,其维度甚至可以小于光波长的1/500。

图2 (a) 基于金属纳米颗粒的等离子谐振腔示意图;(b) 基于金属纳米颗粒-金属薄膜的等离子谐振腔,其模式体积可以达到小于1/500波长的尺度。具体见我们之前的一系列工作,如 Appl. Phys. Rev.96 251104 (2010);ACS Nano6 2550 (2012); J. Phys. Chem C 119 18627 (2015)

而在耦合过程中,耦合强度(g)与光场模式体积(V)的平方根成反比,这里N代表参与耦合的量子辐射点数目 。所以通过把量子辐射点嵌入到等离子谐振腔,我们就可以利用局域等离子谐振超小的模式体积来极大增强耦合强度,从而克服常温下系统损耗高的缺点。下面要讲述的就是我们如何在常温下实现“等离子谐振-量子辐射点”强耦合,并且发现其有趣特性的工作。

实验验证

首先我们把某种染料分子嵌入到间隙等离子谐振腔中。如图3(a)所示,单个金纳米立方体与金膜构成间隙纳米光学腔。这种结构可以把波长在1.91eV (650nm)的光子高度聚集在仅有——3纳米宽的间隙之中(如红色区域指示)。如果我们在间隙里面嵌入某种染料分子(图3(a)中小蓝色球体),而这种染料分子的吸收波长和腔内光子的波长相一致的话,它们的混合光谱会出现两个峰(如图3(c)显示)。这是常温下的能级劈裂,也是强耦合的重要标志。

图3 (a) 基于贵金属纳米颗粒-薄膜等离子谐振腔和掺杂染料分子强耦合系统的示意图;(b) 未掺杂和(c)掺杂染料分子的谐振腔散射谱,粉色虚线代表染料分子的吸收谱;(d) 未掺杂和(e)掺杂染料分子的谐振腔远场散射图像。

更为重要的是,此次实验中我们首次发现这种强耦合效应还可以改变光子在间隙内的空间分布,而这种改变可以在光子的远场成像中观察到。具体来说,未掺杂染料分子的间隙腔的远场成像[图3(d)]显示为多纳圈形状,而掺杂了染料分子的间隙腔[图3(e)]远场成像显示为点状。我们知道,光学腔远场成像和腔内光子的空间分布是一一对应的。换言之,如果远场成像发生了改变,那么一定意味着间隙中光子的空间分布也发生了变化。为了进一步确证这个发现,我们还进行了数值仿真计算,结果和实验非常吻合。

总述

我们的实验结果为常温下研究纳米光学腔和量子辐射点的强耦合效应做出了重要技术铺垫。具体来说,关于“强耦合能改变光场空间分布”的发现不仅能帮助人们在理论上更好的理解纳米尺度下的强耦合效应,还贡献了一种新的调控手段,可以用于改变纳米光学腔的辐射特性。

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 耦合
    +关注

    关注

    13

    文章

    582

    浏览量

    100862
  • 纳米
    +关注

    关注

    2

    文章

    696

    浏览量

    36980
收藏 人收藏

    评论

    相关推荐

    OptiFDTD应用:用于光纤入波导耦合的硅纳米锥仿真

    介绍 在高约束芯片上与亚微米波导上耦合光的两种主要方法是光栅或锥形耦合器。[1] 耦合器由高折射率比材料组成,是基于具有纳米尺寸尖端的短锥形。[2] 锥形
    发表于 12-11 11:27

    聚焦离子束一电子束(FIB-SEM)双束系统原理

    纳米科技是当前科学研究的前沿领域,纳米测量学和纳米加工技术在其中扮演着至关重要的角色。电子束和离子束等工艺是实现纳米尺度加工的关键手段。特别
    的头像 发表于 11-14 23:24 274次阅读
    聚焦离子束一电子束(FIB-SEM)双束<b class='flag-5'>系统</b>原理

    中国科大在纳米级空间分辨红外成像研究中取得新进展

    技术仅能获取催化材料表面的系综平均信息,无法实现对真实活性位点在纳米尺度的高空间分辨鉴别。因此,基于突破光学衍射极限的原子力显微镜-红外光谱联用技术,在高空间分辨率对材料形貌和表面吸附物种进行微区分析,有望
    的头像 发表于 11-08 06:27 146次阅读
    中国科大在<b class='flag-5'>纳米</b>级空间分辨红外成像<b class='flag-5'>研究</b>中取得新进展

    中国科大在纳米级空间分辨红外成像及催化研究中取得新进展

    位点在纳米尺度的高空间分辨鉴别。因此,基于突破光学衍射极限的原子力显微镜-红外光谱联用技术,在高空间分辨率对材料形貌和表面吸附物种进行微区分析,有望为辨别和追踪催化表界面真实活性位点提供一种新的研究范式。
    的头像 发表于 11-04 06:25 162次阅读

    电子束光刻技术实现对纳米结构特征的精细控制

    电子束光刻技术使得对构成多种纳米技术基础的纳米结构特征实现精细控制成为可能。纳米结构制造与测量的研究人员致力于提升纳米尺度
    的头像 发表于 10-18 15:23 294次阅读
    电子束光刻技术实现对<b class='flag-5'>纳米</b>结构特征的精细控制

    非晶纳米晶磁芯是什么材料

    晶态和纳米晶态组成的复合材料。非晶态是指材料的原子排列没有长程有序性,而纳米晶态则是指材料中存在纳米尺度的晶体结构。这种材料的磁性能主要来源于其独特的微观结构。 2. 非晶纳米晶磁芯的
    的头像 发表于 10-09 09:10 694次阅读

    ATA-4012C高压功率放大器在精准医疗的MEMS微流控研究中的应用

    高压功率放大器在精准医疗的MEMS微流控研究中有哪些应用呢?今天Aigtek 安泰电子 就为大家详细介绍一~ 微流控技术 微流控(microfluidics)是一种精确控制和操控微尺度流体,以在微
    的头像 发表于 06-18 11:26 376次阅读
    ATA-4012C高压功率放大器在精准医疗的MEMS微流控<b class='flag-5'>研究</b>中的应用

    一文详解微纳加工刻蚀工艺

    微纳加工的高精度和精确度,可以在微米和纳米尺度上精确控制材料的形状和结构,这使得制造微小器件和结构成为可能。
    发表于 04-16 09:41 1345次阅读

    美国宾夕法尼亚大学研发新型光子芯片,提升AI运算效率,降低能耗

    创新之处在于,这款新芯片首次将获得本杰明·富兰克林奖章的纳德•恩赫塔(Nadine Al Horta)在纳米尺度操控物质的突破性技术,融合到硅光子(SiPh)平台上。恩赫塔团队巧妙地借助光线进行数学运算,而硅则是制造电脑芯片时广为运用的经济实惠的材料。
    的头像 发表于 02-20 16:36 1211次阅读

    新型光子芯片:以光子替换电子执行AI数学运算

    这种新式芯片首次巧妙地融合了纳米尺度物质操作先驱纳德·恩赫塔和硅光子(SiPh)平台理念。其中,恩赫塔通过光的运用提高数学计算速率,而硅光子平台则应用硅元素——广泛用于制造电脑芯片的经济实惠且产量充足的材料。
    的头像 发表于 02-18 16:17 863次阅读

    显微测量|共聚焦显微镜大倾角超清纳米三维显微成像

    共聚焦显微镜在材料学领域应用广泛,通过超高分辨率的三维显微成像测量,可清晰观察材料的表面形貌、表层结构和纳米尺度的缺陷,有助于理解材料的微观特性和材料工程设计。
    的头像 发表于 02-18 10:53 529次阅读
    显微测量|共聚焦显微镜大倾角超清<b class='flag-5'>纳米</b>三维显微成像

    基于光的打印金属纳米结构的方法

    纳米尺度上打印金属可创建具有有趣功能的独特结构,对电子设备、太阳能转换、传感器和其他系统的发展至关重要。
    的头像 发表于 01-22 14:43 648次阅读

    2023年锂电池研究重大突破

    由于高能量密度和低成本,锂-硫(Li-S)电池被认为是先进能源存储系统的有希望的候选者。尽管在抑制锂硫化物长期存在的“穿梭效应”方面付出了巨大努力,但在纳米尺度上理解锂硫化物的界面反应仍然难以捉摸。
    发表于 01-17 11:16 1087次阅读
    2023年锂电池<b class='flag-5'>研究</b>重大突破

    龙芯中科新型工控芯片与工业软件联合创新实验室揭牌,上海这一传感器项目斩获“大飞机”创新创业大赛一

      传感新品 【中国科学院:苏州医工所在纳米碰撞电化学传感研究中获进展】 纳米电化学的核心问题之一是测量界面的微观化,进而探索和调控纳米尺度
    的头像 发表于 01-04 08:44 488次阅读
    龙芯中科新型工控芯片与工业软件联合创新实验室揭牌,上海这一传感器项目斩获“大飞机”创新创业大赛一

    子母式微纳米机器人系统,用于颅内跨尺度靶向给药

    该团队分别在体外胶质瘤细胞微环境和离体猪脑组织内开展了试验。结果表明,微纳米机器人可远距离递送到指定病灶,释放药物杀死胶质瘤细胞。这验证了该研究所提出的子母式微纳米机器人跨尺度递送方法
    的头像 发表于 12-26 16:40 427次阅读
    子母式微<b class='flag-5'>纳米</b>机器人<b class='flag-5'>系统</b>,用于颅内跨<b class='flag-5'>尺度</b>靶向给药