0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

成功研发出用于纳秒级图像识别的神经硬件

独爱72H 来源:教育新闻网 作者:教育新闻网 2020-04-27 17:54 次阅读

(文章来源:教育新闻网)

如今,自动图像识别已被广泛使用:有些计算机程序可以可靠地诊断皮肤癌,驾驶自动驾驶汽车或控制机器人。到目前为止,所有这些都是基于对普通摄像机提供的图像数据进行评估的,而且这很耗时。尤其是每秒记录的图像数量很多时,会生成大量难以处理的数据。

因此,维也纳工业大学的科学家采用了另一种方法:使用特殊的2D材料,开发了一种图像传感器,可以对其进行训练以识别某些物体。该芯片代表了能够学习的人工神经网络。数据不必由计算机读取和处理,但是芯片本身可以提供有关当前所见内容的信息-仅需数纳秒。这项工作现在已经在科学杂志《自然》上发表。

神经网络是类似于我们的大脑的人工系统:神经细胞与许多其他神经细胞相连。当一个细胞处于活动状态时,这会影响邻近神经细胞的活动。在计算机上进行人工学习的原理完全相同:对神经元网络进行数字化仿真,并改变该网络的一个节点影响另一个节点的强度,直到该网络显示出所需的行为为止。

“通常,图像数据首先逐个像素地读取,然后在计算机上进行处理,” Thomas Mueller说。“另一方面,我们将神经网络及其人工智能直接集成到图像传感器的硬件中。这使对象识别的速度提高了多个数量级。”该芯片是在维也纳工业大学开发和制造的。它基于由二硒化钨制成的光电探测器-一种仅由三个原子层组成的超薄材料。单独的光电探测器,即相机系统的“像素”,都连接到提供目标识别结果的少量输出元件。

该出版物的第一作者Lukas Mennel表示:“在我们的芯片中,我们可以专门调节每个检测器元件的灵敏度-换句话说,我们可以控制特定检测器拾取的信号影响输出信号的方式。 。“我们要做的就是直接在光电探测器上调节局部电场。”这种调整是在计算机程序的帮助下从外部完成的。例如,可以使用传感器记录不同的字母并逐步更改各个像素的灵敏度,直到某个字母始终精确地导致相应的输出信号为止。这就是芯片中神经网络的配置方式-使网络中的某些连接更牢固而其他连接更弱。

一旦学习过程完成,就不再需要计算机。神经网络现在可以单独工作。如果将某个字母显示给传感器,它将在50纳秒内生成经过训练的输出信号-例如,代表芯片刚刚识别出的字母的数字代码。“目前,我们的测试芯片还很小,但是您可以根据要解决的任务轻松扩展该技术,” Thomas Mueller说。“从原理上讲,该芯片还可以进行训练,以区分苹果和香蕉,但是我们看到它在科学实验或其他专门应用中的使用更多。”

这项技术可以在需要极高速度的地方有用地应用:“从断裂力学到粒子检测-在许多研究领域中,都对短时间事件进行了研究,” Thomas Mueller说。“通常不必保留有关此事件的所有数据,而是要回答一个非常具体的问题:裂纹是否从左向右传播?几个可能的粒子刚刚通过了?这正是我们的技术有好处。”
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 图像识别
    +关注

    关注

    9

    文章

    519

    浏览量

    38239
  • 智能硬件
    +关注

    关注

    205

    文章

    2341

    浏览量

    107432
收藏 人收藏

    评论

    相关推荐

    AI大模型在图像识别中的优势

    大模型借助高性能的计算硬件和优化的算法,能够在短时间内完成对大量图像数据的处理和分析,显著提高了图像识别的效率。 识别准确性 :通过深度学习和计算机视觉技术,AI大模型能够自动提取
    的头像 发表于 10-23 15:01 378次阅读

    图像识别算法有哪几种

    计算机科学家开始尝试使用计算机来处理和分析图像数据。最初的图像识别算法主要基于模板匹配和边缘检测等简单方法,但随着计算机硬件和算法的不断发展,图像识别算法逐渐变得更加复杂和高效。 20
    的头像 发表于 07-16 11:22 945次阅读

    图像检测和图像识别的原理、方法及应用场景

    图像检测和图像识别是计算机视觉领域的两个重要概念,它们在许多应用场景中发挥着关键作用。 1. 定义 1.1 图像检测 图像检测(Object Detection)是指在
    的头像 发表于 07-16 11:19 3288次阅读

    图像识别算法都有哪些方法

    传统方法和基于深度学习的方法。 传统图像识别算法 1.1 边缘检测 边缘检测是图像识别的基础,它用于检测图像中的边缘信息。边缘是图像中亮度变
    的头像 发表于 07-16 11:14 5131次阅读

    图像识别算法的提升有哪些

    引言 图像识别是计算机视觉领域的核心任务之一,旨在使计算机能够自动地识别和理解图像中的内容。随着计算机硬件的发展和深度学习技术的突破,图像识别
    的头像 发表于 07-16 11:12 595次阅读

    图像识别技术的原理是什么

    图像识别技术是一种利用计算机视觉和机器学习技术对图像进行分析和理解的技术。它可以帮助计算机识别和理解图像中的对象、场景和活动。 图像预处理
    的头像 发表于 07-16 10:46 830次阅读

    图像识别属于人工智能吗

    属于。图像识别是人工智能(Artificial Intelligence, AI)领域的一个重要分支。 一、图像识别概述 1.1 定义 图像识别是指利用计算机技术对图像中的内容进行分析
    的头像 发表于 07-16 10:44 955次阅读

    如何设计人脸识别的神经网络

    人脸识别技术是一种基于人脸特征信息进行身份识别的技术,广泛应用于安全监控、身份认证、智能门禁等领域。神经网络是实现人脸识别的关键技术之一,本
    的头像 发表于 07-04 09:20 570次阅读

    如何利用CNN实现图像识别

    卷积神经网络(CNN)是深度学习领域中一种特别适用于图像识别任务的神经网络结构。它通过模拟人类视觉系统的处理方式,利用卷积、池化等操作,自动提取图像
    的头像 发表于 07-03 16:16 1131次阅读

    图像检测和图像识别的区别是什么

    图像检测和图像识别是计算机视觉领域的两个重要研究方向,它们在许多应用场景中都有着广泛的应用。尽管它们在某些方面有相似之处,但它们之间还是存在一些明显的区别。本文将从多个角度对图像检测和图像识别
    的头像 发表于 07-03 14:41 810次阅读

    卷积神经网络在图像识别中的应用

    卷积神经网络(Convolutional Neural Networks, CNNs)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 1. 卷积神经网络的基本原
    的头像 发表于 07-02 14:28 930次阅读

    神经网络在图像识别中的应用

    随着人工智能技术的飞速发展,神经网络在图像识别领域的应用日益广泛。神经网络以其强大的特征提取和分类能力,为图像识别带来了革命性的进步。本文将详细介绍
    的头像 发表于 07-01 14:19 615次阅读

    图像识别技术原理 图像识别技术的应用领域

    图像识别技术是一种通过计算机对图像进行分析和理解的技术。它借助计算机视觉、模式识别、人工智能等相关技术,通过对图像进行特征提取和匹配,找出图像
    的头像 发表于 02-02 11:01 2275次阅读

    基于TensorFlow和Keras的图像识别

    TensorFlow和Keras最常见的用途之一是图像识别/分类。通过本文,您将了解如何使用Keras达到这一目的。定义如果您不了解图像识别的基本概念,将很难完全理解本文的内容。因此在正文开始之前
    的头像 发表于 01-13 08:27 770次阅读
    基于TensorFlow和Keras的<b class='flag-5'>图像识别</b>

    如何使用Python进行图像识别的自动学习自动训练?

    如何使用Python进行图像识别的自动学习自动训练? 使用Python进行图像识别的自动学习和自动训练需要掌握一些重要的概念和技术。在本文中,我们将介绍如何使用Python中的一些常用库和算法来实现
    的头像 发表于 01-12 16:06 537次阅读