0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

升级神经网络可以更好地发现与疾病相关的基因

独爱72H 来源:教育新闻网 作者:教育新闻网 2020-05-06 16:40 次阅读

(文章来源:教育新闻网)

人工神经网络揭示了大量基因表达数据中的模式,并发现了与疾病相关的基因。来自瑞典林雪平大学的开发人员希望该方法最终可以应用于精密医学和个性化治疗。

科学家根据不同蛋白质或基因如何相互作用来绘制生物系统图。他们使用人工智能(AI),研究了是否有可能通过深度学习发现生物网络,其中通过实验数据训练称为神经网络的实体。

“我们第一次使用深度学习来发现与疾病相关的基因。这是分析大量生物信息或“大数据”的一种非常有效的方法,”林雪平大学物理,化学和生物学系(IFM)的Sanjiv Dwivedi说。

科学家使用了一个大型数据库,其中包含有关许多人中20,000个基因的表达模式的信息。这些信息是“未分类的”,因为研究人员没有提供人工神经网络数据,即哪些基因表达模式来自疾病患者,哪些来自健康人。然后训练AI模型以发现基因表达模式。

人工神经网络由几层组成,其中对信息进行数学处理。该系统包括传递信息处理结果的输入层和输出层。在这两层之间是几个隐藏层,在其中进行计算。当科学家训练人工神经网络时,他们想知道是否有可能确切了解其工作原理

“当我们分析神经网络时,结果发现第一隐藏层在很大程度上代表了各种蛋白质之间的相互作用。相反,在模型的更深层,在第三层,我们发现了不同细胞类型的组。鉴于我们的网络是从未分类的基因表达数据开始的,这种与生物学相关的分组是自动产生的,这非常有趣。” IFM高级讲师兼研究负责人Mika Gustafsson说。

然后,科学家们研究了他们的基因表达模型是否可以用来确定哪些基因表达模式与疾病有关,哪些与健康有关。他们证实,该模型找到了可验证人体生物学机制的相关模式。由于该模型是使用未分类的数据训练的,因此人工神经网络可能已经找到了全新的模式。研究人员现在计划从生物学的角度研究这种先前未知的模式是否相关。

“我们认为,该领域取得进展的关键是了解神经网络。这可以教会我们有关生物学环境的新知识,例如许多因素相互作用的疾病。我们相信,我们的方法所提供的模型更易于推广,可用于许多不同类型的生物学信息。”
Gustafsson说。

(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4764

    浏览量

    100541
  • 生物学
    +关注

    关注

    0

    文章

    26

    浏览量

    12966
收藏 人收藏

    评论

    相关推荐

    BP神经网络和卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器学习领域
    的头像 发表于 07-10 15:24 1226次阅读

    BP神经网络和人工神经网络的区别

    BP神经网络和人工神经网络(Artificial Neural Networks,简称ANNs)之间的关系与区别,是神经网络领域中一个基础且重要的话题。本文将从定义、结构、算法、应用及未来发展等多个方面,详细阐述BP
    的头像 发表于 07-10 15:20 849次阅读

    rnn是递归神经网络还是循环神经网络

    RNN(Recurrent Neural Network)是循环神经网络,而非递归神经网络。循环神经网络是一种具有时间序列特性的神经网络,能够处理序列数据,具有记忆功能。以下是关于循环
    的头像 发表于 07-05 09:52 491次阅读

    递归神经网络是循环神经网络

    递归神经网络(Recurrent Neural Network,简称RNN)和循环神经网络(Recurrent Neural Network,简称RNN)实际上是同一个概念,只是不同的翻译方式
    的头像 发表于 07-04 14:54 643次阅读

    循环神经网络和卷积神经网络的区别

    结构。它们在处理不同类型的数据和解决不同问题时具有各自的优势和特点。本文将从多个方面比较循环神经网络和卷积神经网络的区别。 基本概念 循环神经网络是一种具有循环连接的神经网络结构,它
    的头像 发表于 07-04 14:24 1128次阅读

    深度神经网络与基本神经网络的区别

    在探讨深度神经网络(Deep Neural Networks, DNNs)与基本神经网络(通常指传统神经网络或前向神经网络)的区别时,我们需要从多个维度进行深入分析。这些维度包括
    的头像 发表于 07-04 13:20 679次阅读

    反向传播神经网络和bp神经网络的区别

    反向传播神经网络(Backpropagation Neural Network,简称BP神经网络)是一种多层前馈神经网络,它通过反向传播算法来调整网络中的权重和偏置,以达到最小化误差的
    的头像 发表于 07-03 11:00 680次阅读

    如何使用神经网络进行建模和预测

    神经网络是一种强大的机器学习技术,可以用于建模和预测变量之间的关系。 神经网络的基本概念 神经网络是一种受人脑启发的计算模型,由大量的节点(神经
    的头像 发表于 07-03 10:23 676次阅读

    bp神经网络是深度神经网络

    Network)有相似之处,但它们之间还是存在一些关键的区别。 一、引言 神经网络是一种模拟人脑神经元结构的计算模型,它由大量的神经元(或称为节点)组成,这些神经元通过权重连接在一起
    的头像 发表于 07-03 10:14 688次阅读

    bp神经网络和卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络,它们在
    的头像 发表于 07-03 10:12 1029次阅读

    卷积神经网络的原理与实现

    核心思想是通过卷积操作提取输入数据的特征。与传统的神经网络不同,卷积神经网络具有参数共享和局部连接的特点,这使得其在处理图像等高维数据时具有更高的效率和更好的性能。 卷积层 卷积层是卷积神经网
    的头像 发表于 07-02 16:47 498次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 2951次阅读

    神经网络在数学建模中的应用

    数学建模是一种利用数学方法和工具来描述和分析现实世界问题的过程。神经网络是一种模拟人脑神经元结构和功能的计算模型,可以用于解决各种复杂问题。在数学建模中,神经网络
    的头像 发表于 07-02 11:29 832次阅读

    详解深度学习、神经网络与卷积神经网络的应用

    处理技术也可以通过深度学习来获得更优异的效果,比如去噪、超分辨率和跟踪算法等。为了跟上时代的步伐,必须对深度学习与神经网络技术有所学习和研究。本文将介绍深度学习技术、神经网络与卷积神经网络
    的头像 发表于 01-11 10:51 1917次阅读
    详解深度学习、<b class='flag-5'>神经网络</b>与卷积<b class='flag-5'>神经网络</b>的应用

    卷积神经网络的优点

    传统的神经网络模型,卷积神经网络具有以下优点。 1. 局部连接和权值共享:卷积神经网络通过设置局部连接和权值共享的结构,有效地减少了神经网络的参数数量。此设计使得模型更加稀疏,并且能够
    的头像 发表于 12-07 15:37 4107次阅读