0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于输出反灌电流的ZVS软开关反激变换器的原理和应用

Carol Li 来源:松哥电源 作者:刘松 2022-03-25 09:43 次阅读

1、前言

反激变换器是一种常用的电源结构,广泛应用于中小功率的快充及电源适配器。高功率密度的ZVS软开关反激变换器除了有源箝位反激变换器,还有另一种结构,其利用输出反灌电流,实现初级主功率MOSFET零电压开通,电路的结构如图1所示,和传统的采用同步整流的反激变换器完全相同,只是控制的方式不一样,工作的原理分析如下。

图1:输出反灌电流零电压软开关反激变换器

图2:输出反灌电流零电压软开关反激变换器波形

2、工作原理

每个开关周期根据其工作状态可以分为8个工作模式,各个工作模式的状态及等效电路图分别讨论如下,其中,模式1-5和传统的反激变化器工原理相同。

Lm:变压器初级激磁电感

Lr:变压器初级漏感

Lp:变压器初级总电感,Lp=Lm Lr

n:变压器T初级和次级的匝比,n=Np/Ns

Q1:主功率开关管,DQ1、CQ1为Q1寄生体二极管和寄生输出电压

Qs:次级同步整流管

Dc:箝位吸收电路二极管

Cc:箝位吸收电路电容

Cr:CQ1、Dc以及其它杂散谐振电容Ct总和,Cr=CQ1 CDc Ct

Cc1:Cc1=Cc CQ1 Ct

Vsw:Q1的D、S两端电压

Vin:输入直流电压

Vo:输出直流电压

Vc:箝位电容电压

模式1:t0-t1

Q1开通,Qs保持关断状态。变压器初级电感Lp在输入电压的作用下正向激磁,其电流随时间线性上升:Lp•diLp/dt=Vin。

图3:模式1(Q1开通,Qs关断)模式2:t1-t2

在t1时刻,Q1关断,Qs保持关断状态。Q1关断后,Lp和Cr谐振,Vsw的电压谐振上升。

图4:模式2(Q1关断,Qs关断)模式3:t2-t3

在t2时刻,Vsw的电压上升到Vin Vc时,Dc自然导通,Q1、Qs保持关断状态。Dc导通后,Vc和Vsw的电压继续谐振上升。

图5:模式3(Dc导通,Q1关断,Qs关断)模式4:t3-t4

在t3时刻,VLm电压谐振上升到n•Vo时,Qs导通,Q1保持关断状态。Qs导通后(Qs的寄生体二极管先导通,然后Qs导通后),Lm两端电压箝位在n•Vo,Lm储存能量通过次级绕组向输出负载传送,其电流线性下降。

Lr和Cc1谐振,Lr的电流同时对Cc、CQ1充电,Vsw、Vc的电压继续谐振上升;同时,Lr的电流谐振下降,将其储存的能量转化到Cc、CQ1中。相对于Cc值,CQ1的电容值较小,因此,漏感Lr的能量主要由Cc吸收。

图6:模式4(Dc导通,Qs导通,Q1关断)模式5:t4-t5

在t4时刻,Lr的电流谐振下降到0,Dc自然关断,Qs保持导通状态,Q1保持关断状态。Dc关断后,Vsw电压谐振下降到Vin n•Vo,Lm继续向输出负载释放能量,电流保持线性下降。

图7:模式5(Qs导通,Q1关断,Dc关断)模式6:t5-t6

在t5时刻,Lm的电流下降到0,Qs保持导通状态,Dc和Q1保持关断状态。Lm的电流下降到0后,次级绕组的电流也下降到0,由于Qs保持导通,输出电压对次级绕组反向激磁,也就是形成输出反灌电流。初级绕组在箝位电路的作用下外于反向偏置,次级反向激磁的能量无法向初级转送,因此能量储存在次级绕组的电感中。

图8:模式6(Qs导通,Q1关断,Dc关断)模式7:t6-t7

在t6时刻,关断Qs,Dc和Q1保持关断状态。Qs关断后,次级绕组储存的能量转移到初级绕组中,向输入回路释放能量,将能量回馈到输入电源,Lp和Cr谐振,此时Q1的寄生电容放电,Vsw的电压下降。

图9:模式7(Qs关断,Q1关断,Dc关断)模式8:t7-t0

在t7时刻,Vsw的电压下降到0,Q1的寄生体二极管导通,将Vsw的电压箝位到0,Qs和Dc保持关断状态。Lp的反向负电流在输入电压的作用下继续下降,也就是继续向输入电源回馈能量,直到其电流过0后,在输入电压的作用下正向激磁,Lm的电流从0开始,随时间线性上升,进入下一个开关周期。

图10:模式8(D1关断,Qs关断,Dc关断)在此过程中任一时刻开通Q1,Vsw的电压为0,因此Q1的开通就是零电压开通ZVS。

图11:Q1零电压ZVS开通

3、说明

(1)这种结构保留着无源RCD吸收电路,和有源箝位反激变换器相比,效率稍低,但是其电路结构简单,成本低,更适命较低功率的应用。这种结构的变换器工作于非连续模式DCM,因此每个周期初级激磁电感的电流要到0。

(2)主功率MOSFET管只有在其寄生电容的电压放电到0、体二极管导通后,再开通,才能现零电压软开关ZVS工作,这也是所有零电压ZVS软开关工作的特性。

(3)由于变压器的匝比关系,以及次级绕组电感较小,实现主功率MOSFET管零电压软开关ZVS工作的输出反灌电流的大小不容易精确控制,输出反灌电流太小,不能实现其零电压的开通;反灌电流太大,产生较大的损耗。

(4)输出反灌电流的能量并没有传输到输出,它只是为了实现Q1的零电压关断,因此,在初级和次级之间来回往复形成环流。环流在变压器的绕组和磁芯中产生额外的铜损、铁(磁)损,同时在回路电阻产生导通损耗,影响系统的效率。反灌电流过大,效率会降低。

(5)初级主功率MOSFET和次级同步整流功率MOSFET的驱动信号的时序在各种条件下必须精度控制,否则会产生初级和次级的短路直通,导致系统损坏。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源适配器
    +关注

    关注

    14

    文章

    656

    浏览量

    43066
  • 反激变换器
    +关注

    关注

    2

    文章

    143

    浏览量

    18162
收藏 人收藏

    评论

    相关推荐

    RCD箝位激变换器的电路图设计

    激变换器具有电路拓扑简洁、输入输出电气隔离、电压升/降范围宽、易于多路输出等优点,因而是逆变器辅助开关电源理想的电路拓扑。 然而,
    发表于 10-24 16:34 1次下载

    Flyback激变换器的定义和工作原理

    为磁能并储存在变压中,然后在开关管关断时将磁能转化为电能传输给负载。Flyback激变换器在输入级和输出级之间提供绝缘隔离,是
    的头像 发表于 09-12 11:30 907次阅读

    ZVS高频变换器的定义和工作原理

    ZVS高频变换器是一种在电力电子领域中广泛应用的技术,特别是在新型微波炉电源、大功率加热、高压电路等场合。ZVS,即零电压开关(Zero Voltage Switch),其核心原理在于
    的头像 发表于 08-21 14:29 1052次阅读

    激变换器的结构和工作原理

    激变换器(Flyback Converter),也称为激式转换激式变换器,是一种广泛应
    的头像 发表于 07-29 17:29 2027次阅读
    <b class='flag-5'>反</b><b class='flag-5'>激变换器</b>的结构和工作原理

    降低激变换器输出电压纹波的方法

    激变换器(Flyback Converter)是一种常见的直流-直流(DC-DC)变换器,广泛应用于电源适配器、LED驱动、通信设备等领域。然而,
    的头像 发表于 07-29 14:21 851次阅读

    拓扑篇丨LLC谐振变换器拓扑构成与工作原理分析

    ~ s~ <f~ m~时电路无法实现ZVS开关损耗较大,变换器一般不会工作在此区域。 常用变换器的工作模式分为: 欠谐振模式(f ~ m~ <f ~ s~ &
    发表于 07-19 14:39

    激变换器DCM模式变压设计及元件选择

    占空比固定为45%,最大限地减少应力并优化利用功率MOSFET管和二极管,还具有初级侧调节功能,可减少外部元件数量。通常,开关频率为50-150KHZ。为了使计算更符合实际,定义转换的估计效率,例如85%,这是低功率激式
    的头像 发表于 07-02 14:58 2071次阅读
    <b class='flag-5'>反</b><b class='flag-5'>激变换器</b>DCM模式变压<b class='flag-5'>器</b>设计及元件选择

    深入解析LLC谐振变换器电路设计及其工作原理

    本帖最后由 CC_Tasya 于 2024-7-2 11:03 编辑 LLC谐振变换器作为谐振开关技术的重要拓扑之一,具有高效率,调压特性好,宽负载变化范围内工作特性优良等特点,应用场景广阔
    发表于 05-24 10:45

    带1.1-A开关和集成LDO 同步SEPIC和激变换器TPS6113x数据表

    电子发烧友网站提供《带1.1-A开关和集成LDO 同步SEPIC和激变换器TPS6113x数据表.pdf》资料免费下载
    发表于 03-13 09:53 0次下载
    带1.1-A<b class='flag-5'>开关</b>和集成LDO 同步SEPIC和<b class='flag-5'>反</b><b class='flag-5'>激变换器</b>TPS6113x数据表

    基于MP6004的激式变换器设计步骤

    激式变换器的基本组成元件与大多数其他开关变换器拓扑相同,唯一的不同是它采用了耦合电感,它将变换器
    发表于 03-07 10:13 532次阅读
    基于MP6004的<b class='flag-5'>反</b>激式<b class='flag-5'>变换器</b>设计步骤

    激变换器的优缺点有哪些

    激变换器广泛应用于交流直流(AC/DC)和直流直流(DC/DC)转换,并在输入级和输出级之间提供绝缘隔离,是开关电源的一种。本文将对
    的头像 发表于 01-16 11:38 2352次阅读
    <b class='flag-5'>反</b><b class='flag-5'>激变换器</b>的优缺点有哪些

    Flyback激变换器RCD吸收电路计算方法

    激变换器需要使用RCD吸收电路RSn、CSn和DSn,钳位VDS的尖峰电压值不超过功率MOSFET管的最大额定值,同时具有一定裕量。
    的头像 发表于 01-02 09:40 7671次阅读
    Flyback<b class='flag-5'>反</b><b class='flag-5'>激变换器</b>RCD吸收电路计算方法

    开关反应变快的跳电路设计

    想让开关反应快,跳电路少不了!如何设计,往这瞧
    的头像 发表于 12-06 15:30 520次阅读
    让<b class='flag-5'>开关反</b>应变快的<b class='flag-5'>反</b>跳电路设计

    倍流整流方式ZVS PWM全桥变换器详解

    倍流整流方式( Current Doubler Rectifier , CDR) ZVS 全桥变换器利用两个输出滤波电感的能量可以在很宽的负载范围内实现开关管的
    的头像 发表于 12-04 17:10 4439次阅读
    倍流整流方式<b class='flag-5'>ZVS</b> PWM全桥<b class='flag-5'>变换器</b>详解

    【干货】史上最牛激设计笔记!

    一、引言 开关电源的设计是一份非常耗时费力的苦差事,需要不断地修正多个设计变量,直到性能达到设计目标为止。本文step-by-step 介绍激变换器的设计步骤,并以一个6.5W 隔离双路输出
    的头像 发表于 11-24 19:45 1995次阅读
    【干货】史上最牛<b class='flag-5'>反</b>激设计笔记!