0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI算法LinearDesign在生物学领域的应用研究

牵手一起梦 来源:中国网 作者:佚名 2020-06-01 17:40 次阅读

新型冠状病毒全球累计确诊已超过400万人,疫苗是终结疫情的关键胜负手。在所有正在研发的疫苗路径中,研发速度更快、更具潜力的mRNA疫苗作为一种新兴技术受到了国内外的重点关注。但同时,mRNA疫苗由于稳定性不足容易在保存、运输中降解,也成为制约疫苗大规模推广和使用最亟待解决的问题。

现在,这个困扰世界顶级疫苗公司和学界的生物学难题有望通过AI解决!5月13日,百度研究院重磅推出全球首个mRNA疫苗基因序列设计算法LinearDesign。该算法能够在理论上设计出结构最稳定、蛋白质表达效率最高的mRNA序列,而这只需要90分钟。如果进一步应用线性时间近似算法,时间更可以缩短到16分钟!

美国罗彻斯特大学生物化学与生理系教授Dr. David H. Mathews表示:“LinearDesign的优势在于速度!它能够快速提供一系列的优良序列,研究者可以进一步通过实验来测试其稳定性是否足以充当疫苗。”

事实上,从能够转译同一种蛋白质的众多同源序列中找到二级结构足够稳定、密码子足够优化的mRNA序列挑战难度是相当巨大的。以新型冠状病毒为例,它的刺突蛋白(抗原)共有1273氨基酸,能翻译成刺突蛋白的mRNA序列有10的632次方之多!

遍历所有可能?这显然难以完成。

假设一台超级计算机能做到一秒钟计算一个mRNA结构,那么从宇宙形成开始计算到现在,计算140亿年,连mRNA序列所有可能的亿万分之一都无法算完!

要找出最优的mRNA,科学家们的传统做法是随机改变序列,再看看是否有益。当前,科学界也在寻找解决问题的不同策略,比如,卡耐基梅隆大学和斯坦福大学联合百度合作开发的平台Eterna,就旨在在通过解谜的方式吸引全球玩家共同设计安全稳定的mRNA。Eterna平台所使用的,正是今年1月底百度开放的LinearFold算法作为其结构分析引擎。

LinearFold是十分成功的实验性项目,它将生物学上的难题成功转化为形式语言理论和计算机语言学上的经典问题。在LinearFold的启发之下,百度研究院的研究团队想到了不只是结构分析,而可以进一步运用计算机科学来设计出更稳定、蛋白质表达水平更高的mRNA序列。由此,LinearDesign应运而生。

针对多达10的632次方mRNA序列,LinearDesign采用了动态规划算法来缩小搜索空间。我们知道直到AlphaGo出来之前,AI一直都无法战胜人类棋手,主要原因就是围棋的搜索空间太大了,有3的19x19次方个状态,约合10的172次方。可以看到,mRNA序列设计问题的搜索空间远远大于下围棋的搜索空间。

而LinearDesign的动态规划算法首先用确定有限状态自动机(DFA)来表达氨基酸和蛋白质,这样不同位置上密码子的选择就可以抽象为计算理论中常用的DFA图。如下图,分别把三种氨基酸(A: methionine, B: valine, C: serine)以及终止密码子(D)抽象为DFA图。

在此基础上,将氨基酸的DFA串联起来,即可得到一段蛋白质序列的DFA图。如下图是示例序列“methionineleucine stop”的DFA图。

接下来,我们需要通过DFA来找出二级结构最稳定的mRNA序列。在这里,百度研究院借用了通常用于计算机语言学的常见工具,也就是随机上下文无关文法(SCFG),用于指代RNA折叠。RNA二级结构可以通过SCFG构建语法树来表示。

mRNA疫苗序列设计优化问题实际上是将单个RNA序列的二级结构计算(RNAfolding)推广到多个RNA序列。在用DFA抽象表示多个RNA序列后,研究人员通过取DFA与SCFG的交集,来从多个mRNA序列中找到具有最稳定二级结构的序列。

从上图的新型冠状病毒突刺蛋白实验结果可以看出,对比最左侧图A自然界存在抗体所对应的mRNA序列,右边人工智能设计的二级结构非常紧密。其中的全局最优序列图C,设计时间只需要1.6小时!而如果进一步应用线性时间近似算法,如图B其设计时间将缩短到16分钟。这项技术同样适用于所有mRNA疫苗设计。

疫苗研发是一项耗时耗力的全世界性难题,运用人工智能,计算机科学技术疫苗研发正在不断加速。目前,百度研究院已将LinearDesign网站免费开放,同时相关论文已发布于arXiv,全球研究机构及疫苗研发企业均可使用。百度已与中国疾病预防控制中心病毒病预防控制所签署战略合作协议,后续也将使用百度LinearDesign算法设计的mRNA疫苗序列进行体外实验,验证疫苗的稳定性和蛋白质表达效率。相信在全球研究者的共同努力下,疫苗研发进度将不断提速。
责任编辑:pj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    29928

    浏览量

    268241
  • 百度
    +关注

    关注

    9

    文章

    2249

    浏览量

    90228
  • 引擎
    +关注

    关注

    1

    文章

    358

    浏览量

    22522
收藏 人收藏

    评论

    相关推荐

    高光谱成像技术在生物物证领域研究进展2.0

    目前高光谱成像技术主要应用于食品安全、医学诊断、航天等领域在生物物证领域涉足较少,相关生物物证的检验与鉴定还处于空白,伴随着高光谱成像技术不断创新与发展,未来将可
    的头像 发表于 10-30 18:29 114次阅读
    高光谱成像技术<b class='flag-5'>在生物</b>物证<b class='flag-5'>领域</b>的<b class='flag-5'>研究</b>进展2.0

    紫外能量计的技术原理和应用场景

    于皮肤病治疗、癌症预防等至关重要。医生可以通过UV能量计精确控制紫外线照射的剂量,从而避免患者因过度照射而产生负面反应。 生物学领域在生物学研究中,UV能量计被用于DNA分析和细胞
    发表于 10-15 14:42

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    的深入发展。 3. 挑战与机遇并存 尽管AI在生命科学领域取得了显著的成果,但也面临着诸多挑战。例如,数据隐私、算法偏见、伦理道德等问题都需要我们认真思考和解决。同时,如何更好地将
    发表于 10-14 09:21

    AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    的效率,还为科学研究提供了前所未有的洞察力和精确度。例如,在生物学领域AI能够帮助科学家快速识别基因序列中的关键变异,加速新药研发进程。 2. 跨学科融合的新范式 书中强调,人工智能
    发表于 10-14 09:12

    光电倍增管在医疗领域的应用

    这些微弱的荧光信号,并将其转换为电信号进行放大和处理,从而得到高质量的荧光图像。这对于细胞生物学、分子生物学和病理学等领域研究具有重要意义。
    的头像 发表于 08-09 17:22 476次阅读

    ADI与与生物平台创新公司Flagship Pioneering达成战略合作

    与Flagship Pioneering在应用生物学领域的专长,共同推动生物学见解的发掘以及全新及增强的测量、诊断与新型干预措施。此次合作为双方带来了难得的机遇,旨在共创面向人类健康与可持续发展的突破性解决方案。
    的头像 发表于 07-29 10:38 698次阅读

    合成生物是什么-微流控芯片技术在合成生物学的应用前景

    合成生物其实就是一种“造物”的技术。它融合了生物学、化学和工程等多种技术,以可再生生物质为原料,以生物体作为生产介质,旨在利用廉价原料,以
    的头像 发表于 05-28 13:58 667次阅读
    合成<b class='flag-5'>生物</b>是什么-微流控芯片技术在合成<b class='flag-5'>生物学</b>的应用前景

    电化学生物传感器在生物检测领域的显著优势

    电化学生物传感器在生物检测领域具有显著的优势,这些优势不仅体现在其高灵敏度、快速响应等方面,更在于其在医学诊断、环境监测、食品安全等多个领域中的广泛应用。下面将详细阐述电化学
    的头像 发表于 04-29 10:00 533次阅读
    电化学<b class='flag-5'>生物</b>传感器<b class='flag-5'>在生物</b>检测<b class='flag-5'>领域</b>的显著优势

    安泰ATA-2161高压放大器在生物传感器研究中的应用

    环境监测、医疗卫生和食品检验等。那么ATA-2161高压放大器在生物传感器研究中有怎样的应用呢? 首先生物传感器主要有下面三种分类命名方式,三种分类方法之间实际互相交叉使用: 1.根据生物
    的头像 发表于 03-27 11:18 363次阅读
    安泰ATA-2161高压放大器<b class='flag-5'>在生物</b>传感器<b class='flag-5'>研究</b>中的应用

    天府锦城实验室在生物传感与蛋白质测序领域取得重要进展

    3月10日,记者从天府锦城实验室(未来医学城)获悉,四川大学华西医院临床检验医学研究中心与生物治疗全国重点实验室、天府锦城实验室(未来医学城)耿佳教授和华西第二医院陈路教授联合团队在生物传感与蛋白质测序
    的头像 发表于 03-17 09:10 883次阅读
    天府锦城实验室<b class='flag-5'>在生物</b>传感与蛋白质测序<b class='flag-5'>领域</b>取得重要进展

    高压放大器应用领域分享:介电薄膜材料在生物医疗中的具体应用

    安泰电子 就带大家了解一下关于介电薄膜材料在生物医疗中的具体应用,及功率放大器在其中起到的作用。 介电薄膜材料在生物医疗领域具有广泛的应用前景。由于其独特的物理和化学性质,这种材料可以在生物
    的头像 发表于 01-12 10:12 397次阅读
    高压放大器应用<b class='flag-5'>领域</b>分享:介电薄膜材料<b class='flag-5'>在生物</b>医疗中的具体应用

    新技术在生物样本冷冻中的应用案例分析

    推动生物学研究进展   新技术的应用为生物学研究提供了更加高效和可靠的样本冷冻处理方法,推动了相关领域
    发表于 12-26 13:30

    ATA-2031高压放大器在细胞分选中的应用研究

    细胞分选是一项重要的实验技术,用于从复杂的细胞混合物中分离出特定类型的细胞。在细胞生物学和医学研究领域,准确地分选目标细胞对于实现各种研究目的具有重要意义。高压放大器作为一种常用的电子
    的头像 发表于 12-14 11:14 358次阅读

    主轴之奥秘:探索主轴的定义、作用与应用?|深圳恒兴隆机电a

    中,则涉及生物体结构的核心支撑。 二、主轴的作用与重要性主轴在各个领域都扮演着关键的作用。在机械工程中,主轴是机械设备中承载转动元件的核心,直接影响着设备的性能和稳定性。而在生物学中,细胞的主轴
    发表于 12-11 10:27

    生成式人工智能在生物医学工程的应用

    生物医学工程是一个独特的跨学科领域,它将工程原理与生物学和医学的复杂性相结合,旨在通过开发改善医疗诊断、治疗和患者护理的技术来增强医疗保健。 从设计 MRI 机器和假肢等最先进的医疗设备,到开发组织工程和药物输送的尖端技术,
    的头像 发表于 11-23 11:22 1136次阅读