0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

中间体的探测与表征是诠释化学反应机理的关键

lhl545545 来源:MEMS 作者:MEMS 2020-06-09 17:54 次阅读

据麦姆斯咨询报道,近日,中国科学院大连化学物理研究所分子反应动力学国家重点实验室、大连光源科学研究室研究员江凌团队与南开大学研究员李兰冬团队和曼彻斯特大学教授杨四海团队合作,利用自主研制的红外光解离实验装置,成功表征了关键反应中间体,揭示了镍负载八面沸石催化剂对炔烃/烯烃化学选择性吸附分离的深层次机制。

反应中间体的探测与表征是诠释化学反应机理的关键。然而,这些反应中间体的数量密度低、寿命短、结构复杂,对它们的实验研究非常困难,往往需要高灵敏度、高时间分辨以及对结构敏感的谱学等探测方法。江凌团队将高分辨率质谱与光参量振动激光器相结合,自主研制了具有国际先进水平的红外光解离光谱(Phys. Chem. Chem. Phys., 2018, 20, 25583),可原位/在线高灵敏探测关键反应中间体的组成与结构,对诠释催化反应机制具有重要作用。

低碳烯烃是化学工业中最基本的原料之一(产能接近4亿吨/年),其生产过程会引入少量炔烃杂质,对其聚合与后续加工产生极大影响。高效去除炔烃杂质、生产聚合物级低烯烃对许多工业过程非常重要,是具有极大挑战性的国际前沿科学问题。

近期,李兰冬课题组设计合成了镍负载八面沸石催化剂(Ni@FAU),它在乙炔/乙烯、丙炔/丙烯、丁炔/丁二烯等分离过程中均表现出高炔烃动态吸附容量(1.58~1.80 mmol/g)与炔烃/烯烃分离选择性(83~100)。Ni@FAU同时表现出优异的循环稳定性,且对操作条件(温度、压力、气体浓度、杂质等)不敏感,可满足工业吸附分离的基本要求。

江凌团队利用自主研制的红外光解离实验装置,对Ni@FAU对乙炔/乙烯的吸附机制进行了研究,成功探测到了Ni(C2H2)3,然而并没有发现Ni(C2H4)n。该实验结果证实,Ni@FAU对乙炔具有较高的吸附选择性,具有在混合气流中去除痕量乙炔的分离能力,确认了基于化学键的炔烃/烯烃分离的新策略,有望推动Ni@FAU分子筛材料在相关工业吸附分离过程中的应用。利用先进的谱学技术从分子、团簇、表界面多层次揭示能源小分子与催化剂的化学反应规律,为新型高效吸附催化材料的设计开发提供了新的思路。

大连化物所等利用红外光解离光谱表征炔烃/烯烃分离
责任编辑:pj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 化学
    +关注

    关注

    1

    文章

    83

    浏览量

    19380
  • 分子
    +关注

    关注

    0

    文章

    24

    浏览量

    12525
收藏 人收藏

    评论

    相关推荐

    TPM遇上机器人:效率革命,从“人机协作”的化学反应开始!

    的璀璨明珠——智能机器人相遇,一场关于效率提升的“化学反应”悄然上演,不仅重塑了生产线的面貌,更深刻地改变了我们对未来工厂的认知。具体如天行健企业管理咨询公司下文所述: 一、TPM TPM,这一源自日本的生产管理理念,自诞生以来便以其全面、系统、预防性的维护策
    的头像 发表于 10-30 10:05 77次阅读

    关于反应热报告我们应该了解的知识

         在化工行业的快速发展背景下,化工过程安全领域中的热风险评估逐渐成为关注的焦点。热风险评估不仅系统地分析和评估了化学反应过程中潜在的热失控风险,还为可能引发的火灾、爆炸等事故提供了评估依据
    的头像 发表于 10-21 13:45 283次阅读
    关于<b class='flag-5'>反应</b>热报告我们应该了解的知识

    扫描速率对各体系的电化学行为有什么影响

    速率。 引言 电化学是一门研究电子与物质在电极界面上交换的科学。在电化学研究中,扫描速率是一个关键参数,它直接影响着电化学反应的动力学特性。扫描速率的快慢会影响电极表面的电荷转移速率和
    的头像 发表于 10-14 14:51 366次阅读

    原电池与电解池怎么判断

    原电池和电解池是电化学领域中两个基本而重要的概念,它们在能量转换和化学反应方面起着关键作用。
    的头像 发表于 04-28 15:11 2830次阅读

    原电池和电解池的关系

    原电池和电解池是电化学领域中两个重要的概念,它们在能量转换和化学反应方面起着关键作用。
    的头像 发表于 04-28 15:02 1567次阅读

    化学电池的工作原理是什么

    化学电池的工作原理基于氧化还原反应,这是一种化学反应,涉及电子从一个物质转移到另一个物质。
    的头像 发表于 04-28 14:38 2167次阅读

    压缩空气储能属于电化学储能技术吗

    压缩空气储能并不属于电化学储能技术。电化学储能通常指的是通过电池或其他电化学设备的化学反应来存储和释放能量的技术,例如锂离子电池。
    的头像 发表于 04-26 15:21 519次阅读

    化学储能的特点包括哪些?电化学储能的效率?

    化学储能是一种通过电池或其他电化学设备的化学反应来存储和释放能量的技术。它在电力系统、新能源汽车、便携式电子设备等领域有着广泛的应用。
    的头像 发表于 04-26 15:15 1270次阅读

    什么是电化学储能?电化学储能技术主要包括哪些?

    化学储能是一种通过电化学反应将电能转换为化学能进行存储,并在需要时再将化学能转换回电能的技术。
    的头像 发表于 04-26 15:09 5107次阅读

    中国跃升全球OLED面板生产之首,推动有机材料产能升级

    有机材料对于OLED面板至关重要,制造商需将基础化学原料合成中间体,再经深加工成为前体物料。这些前体卖给终端生产者,然后通过物理升华技术,制得用于面板生产的最终OLED发光材料。
    的头像 发表于 04-11 09:27 454次阅读

    大气化学的奥秘:利用FERGIE进行瞬态吸收光谱研究

    )、过氧根(HO2)以及克里奇中间体(Criegee intermediates)等的化学反应过程,斯通博士尤其感兴趣。为了完成相关检测和实验,他不仅需要在实验室内做研究,也需要进行野外测量以及数值模拟。 图1:接入FERGIE系统的吸收光谱实验设备 挑战 斯通博士过去在
    的头像 发表于 03-05 06:28 285次阅读
    大气<b class='flag-5'>化学</b>的奥秘:利用FERGIE进行瞬态吸收光谱研究

    铅酸蓄电池正极反应式为什么可以吸引硫酸根离子

    、过氧化铅和硫酸组成的。而负极是由铅材料组成。在电池放电过程中,正极发生化学反应,以产生电流供给外部电路使用。 铅酸蓄电池正极为什么可以吸引硫酸根离子?这涉及到电化学反应和物质间的吸引力。以下是详细解释: 1.电化学反应 正极
    的头像 发表于 01-17 10:06 1876次阅读

    为什么电池输出的都是直流电呢?而不是交流电呢?

    的方向上进行,因此只能产生一种电流方向,即直流电。 一、电池原理 电池是通过化学反应产生电能的装置。电池由两个半电池(即正极和负极)组成,中间通过电解质进行连通。在电池工作时,正极发生氧化反应,负极发生还原
    的头像 发表于 01-04 14:44 5314次阅读

    三电极体系工作电极的作用

    三电极体系是一种在电化学分析中常用的实验装置,主要由工作电极、参比电极和对电极组成。其中,工作电极是三电极体系中的核心部分,它不仅在电化学反应中起着关键作用,而且还是电流传输的途径。本文将详细介绍三
    的头像 发表于 12-14 13:36 2618次阅读

    用吸收光谱法研究大气化学

    化学特别感兴趣,例如 OH、HO2 和 Criegee 中间体 (R2COO)。他的研究需要结合实验室实验、现场测量和数值建模。 挑战 Stone 博士过去进行的实验室实验研究了 CH2OO
    的头像 发表于 11-20 06:39 344次阅读
    用吸收光谱法研究大气<b class='flag-5'>化学</b>