0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

集成电路新思路:三维集成技术将使超越摩尔定律成为可能

姚小熊27 来源:武汉新芯 作者:武汉新芯 2020-06-16 13:59 次阅读

最近一系列事件再次表明,制约中国芯片产业发展的主要因素已集中到制造能力。如何快速提升制造能力,推动芯片产业发展?只有不断地研发和创新。

在芯片界,摩尔定律一直占据统治地位。

摩尔定律接下来是终结还是延续,已成为过去十年芯片界热议的话题

摩尔定律自1965年发明以来,一直引领着世界半导体产业向实现更低的成本、更强的性能、更高的经济效益的目标前进。然而,随着半导体技术逐渐逼近硅工艺尺寸极限,原摩尔定律导出的“IC的集成度约每隔18个月翻一倍,而性能也将提升一倍”的规律将受到挑战。

为此, ITRS组织针对半导体产业中远期发展的挑战,在技术路线制定上,提出选择两种发展方式(如图1):一是继续沿着摩尔定律按比例缩小的方向前进,专注于硅基CMOS技术;二是按“后摩尔定律”的多重技术创新应用向前发展,即在产品多功能化(功耗、带宽等)需求下,将硅基CMOS和非硅基等技术相结合,以提供完整的解决方案来应对和满足层出不穷的新市场发展。

· 继续使用先进节点,迈向5纳米及以下

使用先进节点的好处很多,晶体管密度更大、占用空间更少、性能更高、功率更低,但挑战也越来越难以克服。

极小尺寸下,芯片物理瓶颈越来越难以克服。尤其在近几年,先进节点走向10nm、7nm、5nm,问题就不再只是物理障碍了,节点越进化,微缩成本越高,能担负巨额研发费用并实现盈利的设计公司越来越少。

根据公开报道,28nm节点设计成本约为5000万美元,而到5nm节点,设计总成本已经飙高到逾5亿美元,相当于逾35亿人民币。先进工艺如果只能提升性能,无法有效降低甚至守住成本,选择最先进工艺的客户将变得越来越有限。

· 以“三维集成”延续摩尔定律

幸运的是,每当摩尔定律被唱衰将走到尽头,总会激发出科学家和工程师们创新构想,提出力挽狂澜的突破性技术,将看似走向终结的摩尔定律以“后摩尔定律”的形式延续下去。

“后摩尔定律”的实质是,它除了会延续摩尔定律对集成度、性能的追求外,还会利用更多的技术,例如模拟/射频高压功率电源、MEMS传感器、生物芯片技术及系统级封装(SiP)等三维集成技术,以提供具有更高附加值的系统。

ITRS指出,在“后摩尔定律”范畴,随着新兴应用不断出现,智能化微系统芯片将会进入三维集成时代。

三维集成技术概览和两条主要的工艺路线

三维集成电路又称立体集成电路,是集成电路从传统平面集成方式向垂直方向立体集成方式延伸的产物。三维集成电路的优势在于:多层器件重叠结构使芯片集成度成倍提高;TSV和混合键合工艺使芯片间互连长度大幅度缩短,提高传输速度并降低了功耗;多种工艺混合集成,使集成电路功能多样化;减少封装尺寸,降低设计和制造成本。

三维集成技术可将多层集成电路芯片或晶圆堆叠键合,通过三维互连实现多层之间的电信号连接。三维集成技术能实现异质芯片互连结合,发挥出最高系统性能水平,是其独特的最大优势。

经过十来年的发展,三维集成技术逐渐形成两条主要的工艺路线:晶圆间三维堆叠和封装厂主导的芯片间三维互连。

· 晶圆间三维堆叠技术

通过键合堆叠和连通孔工艺的持续改进满足芯片对更大带宽、更小功耗的要求。其工艺目前主要用于图像传感器的生产,近些年,随着物联网人工智能5G对更大带宽、更小功耗和更低延时等特性产品的要求,晶圆级三维集成开始应用于大容量存储、存算一体、高性能计算等领域。代表厂家有Intel、TSMC、Samsung、SONY等。

· 多颗芯片间三维互连技术

芯片级三维集成,主要追求芯片间凸点(Bump)连接小型化,来提高集成度和芯片性能。其技术特点依托于封装打线(Wire bond)和凸点(bump)为基础,把不同功能的芯片通过毫米级的封装工艺连接。代表厂家主要为半导体制造领域的后端封装厂,如Amkor、SPIL、ASE、长电、华进等。

二者互有优劣,晶圆间堆叠工艺精度高、互联密度大;但相较芯片间互连,其良率相对较低、对芯片尺寸匹配度要求高。

国内晶圆级三维集成技术平台代表:武汉新芯

从2012年起,紫光集团旗下的武汉新芯就开始研发第一代晶圆级三维集成制造工艺,并于2013年成功实现背照式影像传感器的量产,并同步开始第二代晶圆级三维集成技术的研发,2014年硅通孔堆叠技术实现量产。

经过多年的发展和积累,武汉新芯的三维集成制造工艺水平与业界第一梯队公司TSMC,索尼,三星等相当,产品已打入国际知名手机品牌以及国内知名品牌终端。在上两代技术的基础上,武汉新芯于2016年完成第三代三维集成技术的研发,成功研制出晶圆级混合键合技术,并成功应用于长江存储64层3D NAND产品上,其技术能力已达到世界顶尖水平。

2018年,武汉新芯启动第四代三维集成技术—多晶圆堆叠技术研发,并于2018年底完成工艺验证,成功迈入多晶圆垂直整合领域。未来还将深耕三维集成领域,开发异质集成技术,目标成为国内一流的12寸三维集成技术工艺生产平台。

通过自身半导体三维集成技术研发和产品拓展,武汉新芯将带动上下游企业共同发展。在目前工艺条件下,提供更小的芯片面积,以及更高的集成度,力主获得具有自主知识产权的核心技术体系和成套工艺解决方案,并将之应用于芯片的开发和生产,实现我国集成电路产业的局部突破和升级,使我国集成电路产业在三维集成技术这一领域,缩小与世界先进水平的差距。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 集成电路
    +关注

    关注

    5379

    文章

    11339

    浏览量

    360550
  • 摩尔定律
    +关注

    关注

    4

    文章

    630

    浏览量

    78909
收藏 人收藏

    评论

    相关推荐

    击碎摩尔定律!英伟达和AMD将一年一款新品,均提及HBM和先进封装

    电子发烧友网报道(文/吴子鹏)摩尔定律是由英特尔创始人之一戈登·摩尔提出的经验规律,描述了集成电路上的晶体管数量和性能随时间的增长趋势。根据摩尔定律
    的头像 发表于 06-04 00:06 3956次阅读
    击碎<b class='flag-5'>摩尔定律</b>!英伟达和AMD将一年一款新品,均提及HBM和先进封装

    高算力AI芯片主张“超越摩尔”,Chiplet与先进封装技术迎百家争鸣时代

    越来越差。在这种情况下,超越摩尔逐渐成为打造高算力芯片的主流技术。   超越摩尔是后
    的头像 发表于 09-04 01:16 3027次阅读
    高算力AI芯片主张“<b class='flag-5'>超越</b><b class='flag-5'>摩尔</b>”,Chiplet与先进封装<b class='flag-5'>技术</b>迎百家争鸣时代

    探秘集成电路制造的“高精尖”:技术全景解析

    集成电路作为现代电子技术的核心,其制造水平直接关系到电子产品的性能和可靠性。随着摩尔定律的推进,集成电路的特征尺寸不断缩小,制造工艺日趋复杂。在这一背景下,
    的头像 发表于 07-12 09:57 1756次阅读
    探秘<b class='flag-5'>集成电路</b>制造的“高精尖”:<b class='flag-5'>三</b>束<b class='flag-5'>技术</b>全景解析

    “自我实现的预言”摩尔定律,如何继续引领创新

    未来的自己制定了一个远大但切实可行的目标一样, 摩尔定律是半导体行业的自我实现 。虽然被誉为技术创新的“黄金法则”,但一些事情尚未广为人知……. 1. 戈登·摩尔完善过摩尔定律的定义
    的头像 发表于 07-05 15:02 235次阅读

    专用集成电路技术有哪些特点 专用集成电路技术有哪些类型

    专用集成电路(Application Specific Integrated Circuit,ASIC)技术是一种用于设计和制造定制化集成电路技术。相比于通用
    的头像 发表于 05-04 17:02 1760次阅读

    封装技术成为摩尔定律的未来吗?

    你可听说过摩尔定律?在半导体这一领域,摩尔定律几乎成了预测未来的神话。这条定律,最早是由英特尔联合创始人戈登·摩尔于1965年提出,简单地说就是这样的:
    的头像 发表于 04-19 13:55 293次阅读
    封装<b class='flag-5'>技术</b>会<b class='flag-5'>成为</b><b class='flag-5'>摩尔定律</b>的未来吗?

    专用集成电路技术是什么意思 专用集成电路技术有哪些

    专用集成电路技术是现代电子设备和系统的重要组成部分。随着科技的发展和需求的不断增长,对高性能、低功耗和小尺寸的集成电路的需求也越来越大。专用集成电路
    的头像 发表于 04-14 10:27 508次阅读

    功能密度定律是否能替代摩尔定律摩尔定律和功能密度定律比较

    众所周知,随着IC工艺的特征尺寸向5nm、3nm迈进,摩尔定律已经要走到尽头了,那么,有什么定律能接替摩尔定律呢?
    的头像 发表于 02-21 09:46 622次阅读
    功能密度<b class='flag-5'>定律</b>是否能替代<b class='flag-5'>摩尔定律</b>?<b class='flag-5'>摩尔定律</b>和功能密度<b class='flag-5'>定律</b>比较

    揭秘集成电路制造的“黑科技”:技术的力量

    集成电路作为现代电子技术的核心,其制造水平直接关系到电子产品的性能和可靠性。随着摩尔定律的推进,集成电路的特征尺寸不断缩小,制造工艺日趋复杂。在这一背景下,
    的头像 发表于 02-20 09:58 879次阅读
    揭秘<b class='flag-5'>集成电路</b>制造的“黑科技”:<b class='flag-5'>三</b>束<b class='flag-5'>技术</b>的力量

    集成电路制造的起源和发展

    摩尔定律的提出也推动了集成电路制造的快速发展。这一定律指出,集成电路中的晶体管数量每隔一段时间便会翻倍,促进了芯片尺寸的不断缩小和性能的不断提升。
    发表于 01-10 16:58 2016次阅读
    <b class='flag-5'>集成电路</b>制造的起源和发展

    中国团队公开“Big Chip”架构能终结摩尔定律

    摩尔定律的终结——真正的摩尔定律,即晶体管随着工艺的每次缩小而变得更便宜、更快——正在让芯片制造商疯狂。
    的头像 发表于 01-09 10:16 757次阅读
    中国团队公开“Big Chip”架构能终结<b class='flag-5'>摩尔定律</b>?

    浅谈三维单片异构集成的发展历程

    基于二材料的电子器件展现出巨大潜力,这些材料具有极低的刚度和几乎为零的内应力,或许能够完全摆脱传统刚性三维材料在三维异质集成技术中的物理限
    的头像 发表于 01-09 10:15 1176次阅读
    浅谈<b class='flag-5'>三维</b>单片异构<b class='flag-5'>集成</b>的发展历程

    摩尔定律时代,Chiplet落地进展和重点企业布局

    如何超越摩尔定律,时代的定义也从摩尔定律时代过渡到了后摩尔定律时代。 后摩尔定律时代,先进封装和Chiplet
    的头像 发表于 12-21 00:30 1457次阅读

    应对传统摩尔定律微缩挑战需要芯片布线和集成的新方法

    应对传统摩尔定律微缩挑战需要芯片布线和集成的新方法
    的头像 发表于 12-05 15:32 527次阅读
    应对传统<b class='flag-5'>摩尔定律</b>微缩挑战需要芯片布线和<b class='flag-5'>集成</b>的新方法

    临港:中国集成电路产业的新引擎

    临港集成电路的发展思路,要成为上海集成电路产业双核驱动的新引擎,通过与张江区形成双区联动。要成为集成电路
    的头像 发表于 11-25 14:21 720次阅读
    临港:中国<b class='flag-5'>集成电路</b>产业的新引擎