0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能深度学习是如何成为智能行业的新高地

牵手一起梦 来源:澎湃新闻 作者:于潇清 2020-06-19 09:29 次阅读

人工智能深度学习显然是智能行业的一个新高地,但有一个广泛的共识,那就是接入的计算越多、数据越庞大是深度学习的重要要素。这是很显然的,首先是大型分布式系统(像Google大脑),接着是神经网络GPU上的快速部署,还有一个被低估的因素是大规模基准测试的存在。大规模基准测试(例如ImageNet)可以为新技术的学术发展提供重要的测试环境,从而能够展示出技术的进度。如果没有这些基准测试,学术研究只能停留在解决小规模问题上,而在这些场景中深度学习的好处并不能显现出来。

目前,用户产生和消费的内容变得更加视觉化,正因如此,分析和理解图片的能力在商业上显得越来越重要。随着深度学习社区走向更丰富的媒体(例如视频),我们相信规模化将会变得更加重要。扩展人工智能非常具有挑战性,尤其是单一GPU的规模化,甚至单一数据中心的规模化。然而,当我们逐渐走向更加复杂的问题时,实现这样的规模化是必须的。

大多数的深度学习工作集中于被称之为“感性问题”,例如理解图片、视频、演讲和音频等。直观上来说,这是有道理的,因为许多深度学习方法会通过编码模拟偏向,这与感知是一致的。例如,这些网络通常都有和人类感知相平行的结构,或者它们具有可以捕捉偏向的结构,就像邻里之间的偏向一样。和相距较远的像素相比,靠近的这些像素相互之间的联系可能更紧密。渐渐地我们将看见深度学习将会用于许多大型系统中,例如机器翻译。在这些情况下深度学习通常被用于解决一些有代表性的问题,而语言结构将会通过其他机器学习技术解决。我们会看到越来越多的这样的混合系统,例如我们购物的体验是人工智能支持的,其中也包括深度学习。

深度学习和强化学习的结合是一个技术上的发展,延续的深度学习在自然语言处理和计算机视觉中的应用突破。值得关注的是之前的深度学习的应用停留在预测上,比如说对图像的识别、机器翻译。对于深度学习来说,真正需要的大数据,就目前而言,可以这么说,没有大数据,就没有好的深度学习模型,进而就没有非常智能的系统。

近几年因为深度学习在某些方面取得了一些喜人的进展,这个领域才又开始火了起来。借助于深度学习算法,人们似乎终于找到了如何解决“抽象概念”这个横亘在机器学习领域多年难题的方法。

迄今为止,大数据生态系统专注于大量数据搜集、管理和策划。很显然,这里也有很多关于分析和预测方面的工作。但是从根本上来说,企业用户并不关心这一点。企业用户仅关心产出,也就是这些数据是否会改变我的行为方式和决定。我们相信这是接下来五年将要重点解决的问题,我们也相信人工智能能把数据和更好的决策之间连接起来。

很显然,深度学习将会在这个演化过程中扮演重要角色,同时在和其他人工智能方法相结合的时候也会做到这一点。接下来的五年中,我们将会看见更多的混合系统,在这些系统中,深度学习会用于解决一些困难的感知型任务,其他人工智能和机器学习技术将被用于解决其他难题,例如推理等。
责任编辑:tzh

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    31195

    浏览量

    269564
  • 人工智能
    +关注

    关注

    1792

    文章

    47458

    浏览量

    239101
  • 深度学习
    +关注

    关注

    73

    文章

    5508

    浏览量

    121319
收藏 人收藏

    评论

    相关推荐

    人工智能推理及神经处理的未来

    人工智能行业所围绕的是一个受技术进步、社会需求和监管政策影响的动态环境。机器学习、自然语言处理和计算机视觉方面的技术进步,加速了人工智能的发展和应用。包括医疗保健、金融和制造业在内的各个行业
    的头像 发表于 12-23 11:18 268次阅读
    <b class='flag-5'>人工智能</b>推理及神经处理的未来

    嵌入式和人工智能究竟是什么关系?

    、连接主义和深度学习等不同的阶段。目前,人工智能已经广泛应用于各种领域,如自然语言处理、计算机视觉、智能推荐等。 嵌入式系统和人工智能在许
    发表于 11-14 16:39

    人工智能、机器学习深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2511次阅读
    <b class='flag-5'>人工智能</b>、机器<b class='flag-5'>学习</b>和<b class='flag-5'>深度</b><b class='flag-5'>学习</b>存在什么区别

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据和机器学习的能源管理系统,通过实时监测和分析能源数据,实现了能源的高效利用和智能化管理。 其次,第6章通过多个案例展示了人工智能在能源科学中
    发表于 10-14 09:27

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习深度学习等先进技术,AI能够处理和分析海量
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    人工智能推荐系统中强大的图形处理器(GPU)一争高下。其独特的设计使得该处理器在功耗受限的条件下仍能实现高性能的图像处理任务。 Ceremorphic公司 :该公司开发的分层学习处理器结合了
    发表于 09-28 11:00

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    ,得到了华为、腾讯、优必选、中煤科工、中国联通、云天励飞、考拉悠然、智航、力维智联等国内人工智能企业的深度参与和大力支持。 报名后即可到现场领取礼品,总计5000份,先到先选! 点击报名:https://bbs.elecfans.com/jishu_2447254_1
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度
    发表于 07-29 17:05

    人工智能、机器学习深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning,
    的头像 发表于 07-03 18:22 1349次阅读

    人工智能深度学习的五大模型及其应用领域

    随着科技的飞速发展,人工智能(AI)技术特别是深度学习在各个领域展现出了强大的潜力和广泛的应用价值。深度学习作为人工智能的一个核心分支,通过
    的头像 发表于 07-03 18:20 4764次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    https://t.elecfans.com/v/25653.html 人工智能 初学者完整学习流程实现手写数字识别案例_Part1 13分59秒 https://t.elecfans.com/v
    发表于 05-10 16:46

    清华大学设立人工智能学院,打造顶尖人才创新高地

    据清华大学官方声明,其在人工智能领域的教育和科研实力雄厚,是国内最早涉足此领域的高校之一,众多毕业生已成为我国人工智能行业的重要力量。
    的头像 发表于 04-28 16:13 608次阅读

    机器学习怎么进入人工智能

    人工智能成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是
    的头像 发表于 04-04 08:41 351次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    ://t.elecfans.com/v/25653.html 人工智能 初学者完整学习流程实现手写数字识别案例 28分55秒 https://t.elecfans.com/v/27184.html
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17