0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高能效的主驱逆变器方案有助解决里程焦虑,提高电动汽车的采用率

安森美 来源:安森美半导体 2020-06-24 15:58 次阅读

全球环保节能法规在推动汽车厂商设计尺寸和重量更小、具有最高电源能效的电动动力总成系统。设计电动动力总成的挑战之一是电池提供直流电,而主驱电机需要交流电。 主驱逆变器是电动动力总成的关键部分,负责将高压电池(350-800V DC)的直流电压转换为三相交流正弦电流的交流电压,进而旋转电感应电机并驱动车辆前进。该模块的性能影响到车辆的整体能效,包括加速和驾驶里程。

安森美半导体提供高能效、稳定可靠且具成本竞争优势的主驱逆变器方案及先进的封装技术,包括分立方案、隔离门极驱动器和创新的VE-Trac系列模块及宽禁带(WBG)方案,以助力增加电动汽车的行驶里程,从而提高电动汽车的采用率。

主驱逆变器方案拓扑

如图1所示,该拓扑包括4个主要功能块:三相逆变级、隔离电源信号处理和调节、通信总线。

图1:主驱逆变器方案拓扑

3相逆变级

3相逆变级的主要器件是逆变器里的每一相里的半桥开关里的高边和低边开关以及相应的高隔离电压门极驱动器,开通和关断那些开关产生3相交流正弦波形使感应电机运行。采用微处理器配置的变频驱动控制算法管理每个逆变器相的高边和低边开关控制

主驱逆变器通常采用400V(HVL1)或800V(HVL2)的高压电池系统,后者在最新设计中日益流行。这些系统要求功率半导体器件的最高工作电压在600V至750V范围内,或900V至1200V范围内,分别对应HVL1或HVL2。要求功率逆变器在每相400A至1000A范围内的电流水平下处理大量功率。为此,一些制造商把分立的封装器件并联,而多数使用功率集成模块(PIM)。

安森美半导体提供分立的IGBT、碳化硅(SiC) MOSFET和创新的VE-Trac系列PIM,以及IGBT和快速恢复二极管的裸芯片,构建主驱逆变器相。所有这些方案都可以与高压门极驱动器接口

安森美半导体的高压门极驱动器技术除了提供用于隔离高压系统与低压系统的电气隔离(galvanic isolation)之外,还有一个关键特性是去饱和(DESAT)检测特性,可防止IGBT短路条件下的“击穿”效应。此外,还具有米勒钳位功能,防止其中一个开关意外导通。且为了增强保护,还具有故障指示功能,以通知系统故障且使能输入。 安森美半导体的经AECQ-101认证的分立IGBT器件,具有出色的热性能和电性能。由于IGBT具有极低的VCE(sat)和门极电荷,因此可将导通和开关损耗降至最低,从而实现高能效运行。 安森美半导体的IGBT与快速反向恢复二极管共同封装,并采用具有竞争优势的场截止沟槽技术进行构建,该技术采用了精细的单元间距设计以创建高功率密度器件,并具有稳定的抗动态闩锁条件的特性。根据电机的功率要求,可以在逆变器每个半桥上的相应的高边和低边开关上并联多个IGBT。

安森美半导体的VE-Trac系列PIM,提供同类最佳的电气和热性能,支持两个主驱逆变器设计平台:VE-Trac Dual和VE-Trac Direct。

VE-Trac Dual结合双面散热(DSC)半桥模块,在紧凑的占位内堆叠和扩展,提供一个小占位的平台方案适用于从80kW到300kW应用。该平台的首个器件是NVG800A75L4DSC,该模块的额定电压750V,额定电流800A,是现有竞争器件容量的两倍。 高效的双面散热确保领先市场的热性能,该模块中没有任何绑定线,使其额定寿命加倍。NVG800A75L4DSC是符合AQG-324认证的模块,含嵌入式智能IGBT,对集成了过流和过温保护功能,提供更快的保护响应时间,因而提供更强固的整体方案。 安森美半导体将在未来数月推出VE-Trac Dual平台内具有更高电压和各种电流水平选项的其它器件,以应对各种新兴应用。

图2:VE-Trac Dual PIM VE-Trac Direct平台提供同类最佳的性能和优势,包括采用直接冷却实现出色的热性能。该平台的首个器件是符合AQG-324认证的NVH820S75L4SPB。 该器件采用six-pack架构封装,已获汽车整车厂商(OEM)和系统供应商广泛认可并采用。这将支持多源供应,最小化布局更改。由于可提供多种功率等级,VE-Trac Direct平台将为不同的汽车平台和应用提供简单、快速的功率调整。 VE-Trac Dual和VE-Trac Direct平台都能够在最高175ºC的结温下连续工作,能在模块化方案的紧凑封装内提供更高的功率。 对于800V电池电动汽车系统,可以将采用D2PAK-7L和TO-247封装的1200V、20mΩ、80mΩ SiC MOSFET插入3个逆变器每个半桥上的高边和低边开关中。SiC MOSFET提供优于硅的开关性能和更高的可靠性,具有低导通电阻和紧凑的芯片尺寸,确保低电容和门极电荷。 这些特性带来了系统优势,包括高能效、快速工作频率、更高的功率密度、更低的电磁干扰(EMI)以及减小占位的便利性。 安森美半导体提供专为主驱逆变器应用而优化的二极管和IGBT裸片,能在175°C的温度下连续运行,具有较低的VCE(sat)和正向电压(VF),具有增强的可靠性和鲁棒性。

信号处理和调节

模拟测量和信号调节模块的主要功能是处理来自逆变器的电流和温度检测信号以及来自感应电机的电流和电机位置检测信号。使用谐振和反激控制器构造的隔离电源可以为微控制器、信号调节和模拟测量电路提供电源。 安森美半导体提供符合AECQ的逻辑组件、比较器运算放大器电流检测放大器,以构建信号处理电路,与微控制器模数转换器单元接口,从而构成闭环系统。

通信总线

安森美半导体提供基于CAN、CAN-FD、LIN、Flexray和系统基础芯片(SBC)的收发器,可确保以超过1 Mbps的数据速率进行可靠定的车载通信,以满足现代车载网络的要求。 此外,安森美半导体还提供AECQ-101认证的通信总线保护器件,结温最大值为175°C,以保护车辆通信线路免受静电放电(ESD)和其他有害瞬态电压事件的影响。这些器件为每条数据线路提供双向保护,为系统设计人员提高系统可靠性并满足严格的EMI要求提供了具成本优势的选择。

评估套件

为便于设计人员在开发主驱逆变器的早期阶段分别评估VE-Trac Dual模块和VE-Trac Direct电源模块的性能,安森美半导体提供VE-Trac Dual评估套件NVG800A75L4DSC-EVK和VE-Trac Direct评估套件NVH820S75L4SPB-EVK,可用作双脉冲测试用以测量关键的开关参数,或用作电机控制的3相逆变器,功率达150kW。

VE-Trac Dual评估套件含三个VE-Trac Dual电源模块,贴装在双侧冷却散热器上,配有6通道门极驱动板、直流母线电容器和用于电机控制的外置霍尔效应电流检测反馈,不含脉宽调制(PWM)控制器。其特性如下:

集成800A,750V第4代场截止(FS4) IGBT/二极管芯片组

汽车级隔离型大电流、高能效IGBT门极驱动器内置电气隔离NCV57000/1

电源模块中的片上电流检测功能实现更快更简单的过流保护(OCP)

在电源模块中集成了片上温度感测功能,从而实现了更快,更接近真正的Tvj过温保护(OTP)

定制设计的双面散热器提供低压降,及出色的热性能

定制的薄膜直流母线电容器,额定值达500V DC,500uF

图3:VE-Trac Dual评估套件 VE-Trac Direct评估套件含一个VE-Trac Direct电源模块,贴装在冷却套中,配有6通道门极驱动器板、直流母线电容器,不含PWM控制器或外部电流检测器。其特性如下:

集成820A, 750V FS4 IGBT/二极管芯片组和直接冷却特性

汽车级隔离型大电流、高能效IGBT门极驱动器内置电气隔离NCV57000/1

薄膜直流母线电容器,额定值达500V DC,500uF

图4:VE-Trac Direct评估套件

产品推荐列表

点击查看大图

总结

设计电动动力总成的挑战之一是电池提供直流电,而主驱电机需要交流电。因此,主驱逆变器是动力总成的关键部分。元器件选择不当或设计不当会导致逆变器能效低或尺寸大(或两者兼而有之),这将不利于车辆行驶更远的里程,必须仔细评估导通损耗和开关损耗,以实现车辆的目标传动系统性能。

安森美半导体提供高能效、强固且具成本竞争优势的主驱逆变器方案及先进的封装技术,包括分立功率器件、隔离门极驱动器和扩展的模块方案,以及宽禁带方案,并持续创新,以解决设计挑战,为迅速增长的主驱逆变器市场提供可扩展性和汽车可靠性,推动电动动力总成的快速发展和采用。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    156

    文章

    12067

    浏览量

    231110
  • 驱动器
    +关注

    关注

    52

    文章

    8226

    浏览量

    146253
  • 逆变器
    +关注

    关注

    283

    文章

    4715

    浏览量

    206697

原文标题:高能效的主驱逆变器方案有助解决里程焦虑,提高电动汽车的采用率

文章出处:【微信号:onsemi-china,微信公众号:安森美】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    无线充电技术:电动汽车未来的里程焦虑解药

    长期以来,电动汽车里程焦虑一直是阻碍消费者购买的重要因素。然而,无线充电技术的出现有望改变这一局面,为电动汽车的普及带来新的希望。   无线充电技术通过简化充电过程,降低充电站
    的头像 发表于 10-24 14:22 720次阅读

    NXP公司电动汽车牵引逆变器解决方案

    随着电动汽车在能耗方面越来越卷,电动汽车驱动逆变器电动汽车动力系统中的效率越来越重要。逆变器的效率直接影响到车辆的续航
    的头像 发表于 10-22 16:21 375次阅读
    NXP公司<b class='flag-5'>电动汽车</b>牵引<b class='flag-5'>逆变器</b>解决<b class='flag-5'>方案</b>

    SiC MOSFET在电动汽车中的应用问题

    电动汽车中可能用到SiC MOSFET的主要汽车电子零部件包括车载充电机、车载DCDC变换器以及逆变器等高压高功率电力电子转换器。
    的头像 发表于 09-29 14:28 265次阅读
    SiC MOSFET在<b class='flag-5'>电动汽车</b>中的应用问题

    浅谈电动汽车火灾特点及扑救对策研究

    0引言   电动汽车火灾事件增多,其特点包括电池高能量密度、快速热释放和烟雾毒性。本文提出应对策略:加强火灾预防,完善电池管理系统,提高电池安全性能;使用干粉灭火器、气溶胶灭火系统等灭火剂;对严重
    的头像 发表于 09-13 15:44 401次阅读
    浅谈<b class='flag-5'>电动汽车</b>火灾特点及扑救对策研究

    恩智浦和采埃孚合作开发基于SiC的电动汽车牵引逆变器解决方案

    恩智浦半导体宣布与电动汽车领域领先企业采埃孚股份公司(ZF Friedrichshafen AG)合作下一代基于SiC的电动汽车(EV)牵引逆变器解决方案。解决
    的头像 发表于 08-27 09:48 1199次阅读

    示波器探头在电动汽车EV的逆变器测试中的应用

    电动汽车(EV)的逆变器测试中,示波器探头扮演着至关重要的角色。逆变器电动汽车动力系统的核心,负责将电池的直流电转换为驱动电机的交流电。为了确保
    的头像 发表于 06-21 10:26 401次阅读

    关于新建住宅小区电动汽车充电桩设计的研究

    摘要: 随着社会的发展和人民生活水平的提高,人们对环境的保护和自身健康意识也逐渐提高。新能源电动汽车具有节能环保、行驶里程长、无噪音污染等优势,为满足社会对环保能源的需求,大力发展新能
    的头像 发表于 05-24 14:01 531次阅读
    关于新建住宅小区<b class='flag-5'>电动汽车</b>充电桩设计的研究

    英飞凌逆变器助力电动汽车跑得快跑得远

    电动汽车越来越受欢迎。如今电动汽车的发展趋势是,电机功率越来越大,但为了保证续航里程,行驶中的电耗也要越来越低。这看似不可能完成的任务,背后的最大功臣正是
    的头像 发表于 04-05 13:46 543次阅读
    英飞凌<b class='flag-5'>主</b><b class='flag-5'>驱</b><b class='flag-5'>逆变器</b>助力<b class='flag-5'>电动汽车</b>跑得快跑得远

    SiC器件如何提升电动汽车的系统效率

    SiC器件可以提高电动汽车的充电模块性能,包括提高频率、降低损耗、缩小体积以及提升效率等。这有助于提升电动汽车的整体性能表现。
    的头像 发表于 03-18 18:12 1577次阅读
    SiC器件如何提升<b class='flag-5'>电动汽车</b>的系统效率

    新能源汽车需要怎样的逆变器汽车厂商又如何选择合适的方案

    随着新能源汽车的发展,其关键部件逆变器的重要性越来越高。市场对
    的头像 发表于 03-15 14:35 2043次阅读
    新能源<b class='flag-5'>汽车</b>需要怎样的<b class='flag-5'>主</b><b class='flag-5'>驱</b><b class='flag-5'>逆变器</b>?<b class='flag-5'>汽车</b>厂商又如何选择合适的<b class='flag-5'>主</b><b class='flag-5'>驱</b><b class='flag-5'>方案</b>?

    基于碳化硅(SiC)材料打造的逆变器即将大规模“上车”

    在当今全球汽车工业驶向电动化的滚滚浪潮中,一项关键技术正以其颠覆性的性能改变着电动汽车整体市场竞争力的新格局,它便是基于碳化硅(SiC)材料打造的
    的头像 发表于 03-13 09:44 1620次阅读
    基于碳化硅(SiC)材料打造的<b class='flag-5'>主</b><b class='flag-5'>驱</b><b class='flag-5'>逆变器</b>即将大规模“上车”

    电动汽车超级快充技术迅速推进,快速补能解决电量焦虑

    。   但是即便如此,很多新能源汽车车主仍有着挥之不去的焦虑,在电动汽车和智能手机一样普及的今天,用户对电动汽车的续航里程
    的头像 发表于 02-18 00:02 4608次阅读

    意法半导体与致瞻科技合作提升电动汽车夏冬续航里程

    的压缩机控制器提供意法半导体第三代碳化硅(SiC)MOSFET技术。采用高能的控制器可为新能源汽车带来诸多益处,以动力电池容量60kWh~90kWh的中型
    的头像 发表于 01-18 10:04 719次阅读

    电动汽车上的逆变器是干什么的

    电动汽车(Electric Vehicle,简称EV)是一种采用电池作为能源的交通工具,其核心部件之一就是逆变器逆变器电动汽车中起着至关
    的头像 发表于 01-11 15:28 4761次阅读
    <b class='flag-5'>电动汽车</b>上的<b class='flag-5'>逆变器</b>是干什么的

    电动汽车电池自放电深度分析

    技术发展的一个难题之一。本文将详细分析电动汽车电池的自放电现象,探讨其原因以及对电动汽车续航里程的影响,并提出一些可能的解决方案。 首先,我们来看
    的头像 发表于 01-04 10:46 1244次阅读