0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能机器视觉技术在质检领域的应用

ThunderSoft中科创达 来源:Thundersoft中科创达 作者:Thundersoft中科创达 2020-06-24 16:16 次阅读

人工智能机器视觉技术在质检领域的应用,为工业流水线带来了精准度高、速度快、稳定性高、信息集成与留存等明显的优势,帮助企业可以更好地进行质量和成本控制。而且现在的机器视觉已经不仅仅在工厂端,其已经成为一个云端融合的系统,持续地推动工业的升级。

在工厂里,工作岗位有很多,质检员就是其中一种。质检员需要负责公司所有物资、产品、设备的质量检查,这就需要熟悉并理解产品图纸、工艺、产品结构、性能及使用要求等,可以说质量管理是一项复杂的系统工程,也是企业品牌和市场竞争力的关键。

制造业在生产上一直在不断的发展,在质检上也不例外,人工检测不可避免还是会出现不良品,而且耗时长,效率低等问题。

随着人工智能机器视觉技术在质检领域的应用,为工业流水线带来了精准度高、速度快、稳定性高、信息集成与留存等明显的优势,帮助企业可以更好地进行质量和成本控制。而且现在的机器视觉已经不仅仅在工厂端,其已经成为一个云端融合的系统,持续地推动工业的升级。

当机器视觉遇上工业质检

据Markets and Markets发布的研究报告显示,2020全球机器视觉市场规模为107亿美元,到2025年,该市场将增长至127亿美元。预测期内(2020—2025年)的年复合增长率为13.6%。

全球机器视觉市场增长主要有以下四大驱动力:一、工业质量检查和自动化需求;二、视觉引导机器人系统需求;三、3D机器视觉系统的不断采用;四、混合动力和电动汽车的生产的增加。

其中机器视觉在工业上应用领域广阔,核心功能包括:测量、检测、识别、定位等。产业链可以分为上游部件级市场、中游系统集成/整机装备市场和下游应用市场。上游包括:光源、镜头、工业相机、图像采集卡、图像处理软件等软硬件提供商;中游包括:集成和整机设备提供商;下游包括:电子制造行业、汽车、印刷包装、烟草、农业、医药、纺织、交通等领域。

中科创达CTO邹鹏程表示,工业质检是机器视觉在工业应用中较早的领域,在发展上也有着组织、文化、产品三大挑战,这就需要打造面向服务的平台型组织,打造以技术为本的开放文化,最重要的是打造一套融合系统解决机器视觉在工业领域的应用。

因为未来更多是异构分布计算的场景,所以系统架构应该是终端和云端一致的体系,也就是融合系统,通过同一个代码就可以实现所有的运行和部署,不需要考虑在端侧还是云侧。

云端的融合ADC系统

成立于2008年的中科创达致力于提供卓越的智能操作系统产品、技术及解决方案,主要拥有智能手机、智能物联网、智能汽车、智能视觉四大业务板块。

2018年中科创达推出了基于人工智能和智能视觉技术的中科创达智慧工业ADC (Automatic Defect Classification) 系统,将AI技术赋能传统工业,提升生产效率和产品良率,助力传统制造企业转型升级。

ADC系统包含缺陷自动化分类、新产品迭代数据清洗、业务作业员认证三个子系统,从作业员技能认证、数据集更新到新产品导入,贯穿工业检测的整个生命周期,有效帮助制造企业减少75%的工作量,产能提升35倍。相比人工检测,漏检率下降3%,准确率提升99%。

邹鹏程表示,ADC系统在2019年开始一期第一阶段的研发,最初为私有化部署,并非云方案,经过了半年的开发测试,准确率达到了90%。由于私有化需要部署在各地工厂端,带了很大的成本压力,而且疫情期间很难进行实地部署,所以在一期第二阶段,开始在AWS上进行试点,并使用Amazon SageMaker。

在与Amazon SageMaker集成后ADC系统具备了四大特点:第一、上手容易:大大降低简易算法开发的难度,工具链完善,上手的速度非常快;第二、开发快速:使用组件快速、轻松地构建和训练机器学习模型,在控制台即可将模型部署到安全、可扩展的环境中;第三、算法灵活:支持主流的TensorFlow、PyTorch、Keras、xnet等框架,提供常见的机器学习算法,支持自定义算法;第四、功能强大:一体式机器学习环境,高质量的训练数据集,实验管理和跟踪,强化学习、模型监控等。

让行业应用发挥更大作用

ADC系统有三种部署模式,第一、私有化部署,即在工厂端;第二、云端部署,即部署在AWS上;第三、分布式部署,端侧部署ARM服务器和AWS IoTGreengrass边缘计算等,云侧部署Amazon SageMaker的组合。 目前ADC系统已经在多个领域进行应用,第一、汽车行业,例如表面涂胶检测、车身板件装配检测等;第二、电子产品行业,例如PCBA电路板检测、外观缺陷检测、包装缺陷检测等;第三、化妆品行业,例如包装缺陷检测、灌装液位检测、标签损坏检测等。

在与AWS的合作上,其实中科创达最早是自己做模型的训练、分发等工作,在过程中也认识到自己的核心价值是操作系统和之上的算法,所以转向Amazon SageMaker可以轻松地获得机器学习能力,例如弹性Notebook、实验管理、自动模型创建、模型调试分析,以及模型概念漂移检测等能力。

AWS中国区生态系统及合作伙伴部总经理汪湧也提到和中科创达合作的三大战略意义,第一、AWS在集成电路领域的应用,第二、Amazon SageMaker落地中国,为中国企业提供集成化的人工智能环境,帮助企业进行转型;第三、传统视觉技术到云上的转型。

在Amazon SageMaker和合作之后,AWS也将和中科创达在汽车、晶片等行业进行拓展,在新基建的框架下,通过技术帮助合作伙伴在行业应用上发挥更大的作用。
责任编辑:pj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • adc
    adc
    +关注

    关注

    98

    文章

    6481

    浏览量

    544312
  • 人工智能
    +关注

    关注

    1791

    文章

    47059

    浏览量

    238045
  • 智能汽车
    +关注

    关注

    30

    文章

    2820

    浏览量

    107211
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    、连接主义和深度学习等不同的阶段。目前,人工智能已经广泛应用于各种领域,如自然语言处理、计算机视觉智能推荐等。 嵌入式系统和人工智能在许
    发表于 11-14 16:39

    RISC-VAI领域的发展前景怎么样?

    随着人工智能的不断发展,现在的视觉机器人,无人驾驶等智能产品的不断更新迭代,发现ARM占用很大的市场份额,推出的ARM Cortex M85性能也是杠杠的,不知道RISC-V
    发表于 10-25 19:13

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一个阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和深远影响。
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。阅读这一章后,我深刻感受到了人工智能技术科学领域的广泛应用潜
    发表于 10-14 09:12

    risc-v人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展和普及,RISC-V
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    每个交叉领域,本书通过案例进行了详尽的介绍,梳理了产业地图,并给出了相关政策启示。 《AI for Science:人工智能驱动科学创新》适合所有关注人工智能技术和产业发展的读者阅读,特别适合材料科学
    发表于 09-09 13:54

    机器视觉人工智能在数字化制造领域的深度应用分析

    在数字化制造领域机器视觉人工智能技术的应用正在迅速扩展,并逐渐成为推动生产效率和质量提升的关键技术,与此同时,也为企业实现
    的头像 发表于 09-03 10:25 205次阅读

    FPGA人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术
    发表于 07-29 17:05

    机器视觉人工智能的关系与应用

    机器视觉人工智能的关系是一个广泛而深入的话题,涉及到计算机科学、电子工程、光学、图像处理、模式识别等多个领域。 一、机器
    的头像 发表于 07-16 10:27 858次阅读

    计算机视觉人工智能的关系是什么

    引言 计算机视觉是一门研究如何使计算机能够理解和解释视觉信息的学科。它涉及到图像处理、模式识别、机器学习等多个领域的知识。人工智能则是研究如
    的头像 发表于 07-09 09:25 586次阅读

    计算机视觉人工智能领域有哪些主要应用?

    计算机视觉人工智能领域的一个重要分支,它主要研究如何让计算机能够像人类一样理解和处理图像和视频数据。计算机视觉技术
    的头像 发表于 07-09 09:14 1274次阅读

    NLP技术人工智能领域的重要性

    自然语言处理(Natural Language Processing, NLP)与人工智能(Artificial Intelligence, AI)的交织发展中,NLP技术作为连接人类语言与
    的头像 发表于 07-04 16:03 478次阅读

    VOC人工智能领域大放异彩:开启智能生活新篇章

    ,正在以其独特的魅力改变着我们的生活。本文将深入探讨VOC人工智能领域的应用,展望其未来的发展前景,并揭示其如何助力我们开启智能生活新篇章。 VOC
    的头像 发表于 06-05 10:31 348次阅读

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷嵌入式
    发表于 02-26 10:17