约翰·霍普金斯大学的放射科医生已经重新设计了深度学习算法,该算法旨在检测胸部X光片上的结核病,从而帮助识别COVID-19。
队有它的工作发表在网上中华胸成像,并覆盖由约翰霍普金斯大学新闻媒体集线器。
作者指出,唯一的警告是,当面对结核病常见但在COVID中罕见的肺部发现时,AI模型可能会返回COVID阳性诊断。
尽管如此,该算法仍正确地将88例COVID-19胸部X射线中的78例归类为阳性。那是89%的成功率,并且在实验室测试中证实了阳性病例。
概念验证研究进一步表明,由模型生成的视觉热图在几种情况下可能有用。
“由于流行病使发达国家的医院不堪重负,协助非专业放射科医生的诊断工具可能变得尤为重要,在发达国家,由于社会隔离和隔离与COVID-19签订合同的工人的要求,卫生保健人员正在减少,而在发展中国家,这种情况很少专门的放射科医生在基线工作。”主要作者医学博士Paul Yi和同事写道。
此外,他们指出,诸如此类的深度学习模型可以用作分类工具,以快速隔离急诊候诊区中可能出现COVID阳性的患者。
在集线器的报道中,Yi说,重新设计模型的想法是由新型冠状病毒的新颖性引发的。
他说:“我们的目标是证明从未学习过COVID-19案例的深度学习模型能够识别这些案例。”“由于COVID-19是一种新型感染,因此目前尚无法使用大型数据集来训练深度学习模型。我们假设可以使用外观与COVID-19类似的其他感染图像来训练能够识别这种新疾病的模型。”
-
深度学习
+关注
关注
73文章
5507浏览量
121272 -
COVID-19
+关注
关注
0文章
226浏览量
10541
发布评论请先 登录
相关推荐
评论