0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一种基于机器学习算法的数学建模方法

倩倩 来源:新经网 2020-07-07 17:07 次阅读

根据发表在《自然机器》上的论文,机器学习工具选择了三种生物标志物,即乳酸脱氢酶,淋巴细胞和高敏感性C反应蛋白水平,这些标志物可以从中国485名武汉感染者的血液样本中预测COVID-19患者的死亡率。智力。这些工具可以以90%以上的准确率预测单个患者在其结果之前十多天的死亡率。

对患者的COVID-19严重程度进行快速,准确和早期的临床评估至关重要。但是,目前尚无可预测的生物标志物来区分需要立即就医的患者并评估其相关死亡率。

叶媛,李岩的同事分析了来自中国武汉的485例患者的血液样本,以鉴定出强有力的有意义的死亡风险标记。在2020年1月10日至2月18日期间从同济医院的患者收集的样本用于模型开发。在分析的375例病例中,有201例从COVID-19中康复并出院,其余174例患者死亡。

作者设计了一种基于机器学习算法的数学建模方法,该算法旨在识别最能预测患者死亡率的生物标志物。该问题被表述为分类任务,其中的输入内容包括基本信息,症状,血液样本以及实验室检查的结果,包括肝功能,肾功能,凝血功能,电解质和炎性因子,取自普通,重症和重症患者。该模型选择了乳酸脱氢酶(LDH),淋巴细胞和高敏感性C反应蛋白水平作为区分处于危险中的患者的最关键的生物标志物。该发现与当前医学知识一致,即仅高LDH水平与各种疾病(包括肺部疾病,如肺炎)中发生的组织分解有关。大多数患者在住院期间都采集了多个血液样本。但是,该模型仅使用患者最终样本中的数据。然而,该模型可以应用于所有其他血液样本,并且可以估计生物标志物的预测潜力。

作者得出的结论是,他们的模型提供了简单,可解释和直观的临床测试,可以准确,快速地量化死亡风险。他们还暗示淋巴细胞(一种白细胞)可以作为潜在的治疗靶点,这得到了临床研究的支持。他们指出,随着可用数据的增加,将需要重复此过程以提高准确性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8425

    浏览量

    132776
  • COVID-19
    +关注

    关注

    0

    文章

    226

    浏览量

    10542
收藏 人收藏

    评论

    相关推荐

    传统机器学习方法和应用指导

    用于开发生物学数据的机器学习方法。尽管深度学习般指神经网络算法)是个强大的工具,目前也非常
    的头像 发表于 12-30 09:16 271次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习方法</b>和应用指导

    NPU与机器学习算法的关系

    在人工智能领域,机器学习算法是实现智能系统的核心。随着数据量的激增和算法复杂度的提升,对计算资源的需求也在不断增长。NPU作为一种专门为深度
    的头像 发表于 11-15 09:19 521次阅读

    一种基于深度学习的二维拉曼光谱算法

    近日,天津大学精密仪器与光电子工程学院的光子芯片实验室提出了一种基于深度学习的二维拉曼光谱算法,成果以“Rapid and accurate bacteria identification
    的头像 发表于 11-07 09:08 248次阅读
    <b class='flag-5'>一种</b>基于深度<b class='flag-5'>学习</b>的二维拉曼光谱<b class='flag-5'>算法</b>

    一种半动态环境中的定位方法

    和终身定位方法,以识别非静态环境中的半动态物体,并提出了个通用框架,将主流物体检测算法与建图和定位算法集成在起。建图
    的头像 发表于 09-30 14:40 292次阅读
    <b class='flag-5'>一种</b>半动态环境中的定位<b class='flag-5'>方法</b>

    matlab 神经网络 数学建模数值分析

    matlab神经网络 数学建模数值分析 精通的可以讨论下
    发表于 09-18 15:14

    数学建模(2)--TOPSIS法

    和K.Yoon于1981年首次提出,TOPSIS法根据有限个评价对象与理想化目标的接近程度进行排序的方法,是在现有的对象中进行相对优劣的评价。TOPSIS法是一种逼近于理想解的排序法,该方法只要求各效用函数具有
    发表于 09-06 16:38

    【「时间序列与机器学习」阅读体验】时间序列的信息提取

    方法为该时间序列填充缺失值。 时间序列的缩放是指对原有的时间序列数据进行数据范围的调整,以便更好地完成后续的数据分析或机器学习任务。该节有讲到时间序列的最小最大缩放、时间序列的最大绝对值缩放、时间序列
    发表于 08-17 21:12

    Python建模算法与应用

    Python作为一种功能强大、免费、开源且面向对象的编程语言,在科学计算、数学建模、数据分析等领域展现出了卓越的性能。其简洁的语法、对动态输入的支持以及解释性语言的本质,使得Python在多个平台
    的头像 发表于 07-24 10:41 595次阅读

    rup是一种什么模型

    RUP(Rational Unified Process,统建模语言)是一种软件开发过程模型,它是一种迭代和增量的软件开发方法。RUP是由
    的头像 发表于 07-09 10:13 1325次阅读

    神经网络反向传播算法的原理、数学推导及实现步骤

    传播算法的原理、数学推导、实现步骤以及在深度学习中的应用。 神经网络概述 神经网络是一种受人脑启发的计算模型,由大量的神经元(或称为节点)组成,每个神经元与其他神经元通过权重连接。神经
    的头像 发表于 07-03 11:16 830次阅读

    数学建模神经网络模型的优缺点有哪些

    数学建模神经网络模型是一种基于人工神经网络的数学建模方法,它通过模拟人脑神经元的连接和信息传递机
    的头像 发表于 07-02 11:36 942次阅读

    神经网络在数学建模中的应用

    数学建模一种利用数学方法和工具来描述和分析现实世界问题的过程。神经网络是一种模拟人脑神经元结构和功能的计算模型,可以用于解决各种复杂问题。
    的头像 发表于 07-02 11:29 990次阅读

    机器学习算法原理详解

    机器学习作为人工智能的个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器
    的头像 发表于 07-02 11:25 1141次阅读

    机器学习的经典算法与应用

    关于数据机器学习就是喂入算法和数据,让算法从数据中寻找一种相应的关系。Iris鸢尾花数据集是
    的头像 发表于 06-27 08:27 1682次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>的经典<b class='flag-5'>算法</b>与应用

    机器学习怎么进入人工智能

    ,人工智能已成为个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是
    的头像 发表于 04-04 08:41 345次阅读