研究者对光敏剂进行修饰,调控其激发态性质,从而大幅度提升CO2光还原体系的敏化能力与催化性能。
CO2光还原——在太阳能驱动下,将CO2还原为CO、甲酸、甲醇等燃料分子是解决能源危机和环境污染问题的有效途径之一。许多研究组都致力于寻找高效CO2光还原催化剂。然而,作为吸光中心和电子转移桥梁的光敏剂也发挥着至关重要的作用。因此,开发高性能吸光中心——即提升光催化体系的敏化能力,将是开发高效CO2光还原体系的有效策略之一。最近,天津理工大学新能源材料与低碳技术研究院张志明/鲁统部教授研究团队(第一作者:王平博士生,通讯作者:郭颂博士、张志明教授)在《国家科学评论》(National Science Review, NSR)发表研究论文,将有机发色团芘引入到母体钌配合物(Ru-1)光敏剂中,通过调节芘基修饰位点和连接模式,实现光敏剂激发态微观调控,进而调控光敏剂的敏化能力,实现了CO2光还原性能的大幅度提升。
图1. 光敏剂分子结构的微观调控与相应三重态能级。研究者在母体光敏剂Ru-1的1,10-菲洛啉的不同位点引入芘基单元,同时改变连接模式(单键和炔键),依次制备出一系列光敏剂:Ru-2、Ru-3和Ru-4。从Ru-1到Ru-4,激发态能级逐级降低,实现了从3MLCT态向3IL态的转变(图1),极大延长了光敏剂激发态寿命。光敏剂的电子转移效率在很大程度上依赖于它的激发态寿命与氧化电位:从动力学上看,激发态寿命越长,电子转移越快;从热力学上看,在马库斯正常区域内,激发态氧化电位越高,越有利于电子转移。但在催化体系中,二者此消彼长,难以兼顾。在该工作中,激发态类型转变和激发态能级降低延长了激发态寿命,但同时也降低了激发态氧化电位。研究者通过激发态微观调控,筛选出强敏化能力的光敏剂Ru-3,实现了激发态寿命和氧化还原电位的有效匹配。该光敏剂用于高效敏化双核钴团簇催化剂,可高选择性的将CO2还原为CO,转化数(TON)高达66480,比传统光敏剂(Ru-1)高17倍。
图2. (A) 光催化性能研究;(B) 光催化机制;(C) 激发态寿命;(D) 激发态氧化电位该文独辟蹊径,通过调控光敏剂敏化能力大幅提升CO2光还原性能。首次通过微观调控策略,实现光敏剂分子的激发态寿命和激发态氧化还原电位有效调控。该工作将为高效CO2光还原体系的开发提供一种新的思路,有望进一步提升现有体系的光能转换效率。、
责任编辑:pj
-
太阳能
+关注
关注
37文章
3415浏览量
114310 -
CO2
+关注
关注
1文章
38浏览量
11991 -
甲醇
+关注
关注
0文章
9浏览量
7629
发布评论请先 登录
相关推荐
评论