0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Momenta造“飞轮式”自动驾驶,路线图首次公布

中科院长春光机所 来源:量子位 2020-07-14 16:11 次阅读

这就是飞轮转动起来的「恐怖」速度?

去年12月发布L4级完全无人驾驶技术MSD(Momenta Self Driving)实车路测视频后,Momenta今天正式对外披露内部L4最新进展和推进时间表:

2024年,解决L4无人车「行驶千亿公里,解决百万问题」难题,在苏州规模化部署Robotaxi,车端100%去安全员,实现单车盈利;随后,Momenta 将快速进行多地的Robotaxi大规模落地。

对于行业中的大多数玩家来说,怎么迈过数据门槛、实现Robotaxi大规模落地且盈利仍旧是头疼且棘手的问题。

现在Momenta直接拿出了清晰的推进路线图,不得不令人侧目。

Momenta凭什么?

在6月30日CEO曹旭东的分享中,给出了答案:「飞轮式」L4,以及为什么:

与同行业路线相比,「飞轮式」L4的优势在于厚积薄发,通过量产数据、数据驱动的算法、闭环自动化的前期大量积累,可短时间、大幅度提升研发效率, 跨数量级降低规模化L4的总成本。

而且飞轮的能量,在Momenta研发L4技术的过程中,已经得到了充分的展现:

从2019年中开始重点投入L4研发,只用常规团队1/10的规模(50人左右的团队),半年内做到了城区开放道路行驶过程中的全程无接管,而且还包含如临时施工、多种 不规则车辆、逆行横穿等各种复杂的场景。

在此之前,行业内最快的友商也差不多用时1年,且积累了至少十万公里以上实际路测里程。

所以,Momenta到底打造了一个怎样的「飞轮式」L4?

先给L4规模化落地算一笔账

自动驾驶的终局,一定是规模化的完全无人驾驶(L4及以上)」,是无人车行业的共识。

虽然具体怎么实现出现了路径分野,但前提条件也到了行业不少玩家的认同:

要有足够长时间的行驶数据,能够解决各种刁钻的问题,人类司机的驾驶水平约为一亿公里出现一次致命事故,最好可以比人类司机水平再高一个数量级。

曹旭东将其概括为「行驶千亿公里、解决百万问题」。在他看来,这是整个行业面临的共同挑战,也是决定规模化L4成本的核心变量。

无人车领域的先行者Waymo,用“后装改造车辆—路测收集数据—试运营”的方式,走出来了一条路。

其后跟随者众多,几乎行业中大多数发力L4的无人车公司,都或多或少受到了影响。

但在「行驶千亿公里」面前,Waymo显然不是一个可以复制对象。

曹旭东做了一个计算:“如果全部用车来跑完的话,需要100万辆车, 每天10个小时不间断运行,连续跑1年。”

而且这些车都要加上传感器和计算单元成本,平均每辆车10万美元来算,早期的投入资金将要达到的1000亿美元——这还没算解决问题的成本。

Waymo有谷歌以及争相给钱的投资人,但其他跟随者呢?又有谁能有如此雄厚的资金实力?

所以也就有了不少无人车公司纷纷寄身于巨头,比如吴恩达旗下的Drive.ai—苹果、Cruise—通用、Argo AI—福特,以及最新的Zoox—亚马逊

不过,这并不意味着,自动驾驶行业的红利,只能被巨头吃掉。还有诸多创业公司,正在走出了另外一条通向规模化L4之路。

比如「飞轮式」L4,正是Momenta用来「重新定义规模化无人驾驶,跨数量级降低成本」的解决方案。

「飞轮式」L4如何跨数量级降低成本?

「为了使静止的飞轮转动起来,一开始你必须使很大的力气,一圈一圈反复地推,每转一圈都很费力,但是每一圈的努力都不会白费,飞轮会转动得越来越快,终成厚积薄发之势。」

在曹旭东看来,对于自动驾驶行业的创业者来说,「千亿公里、百万问题」这个目标非常宏大,必须装上强有力的「飞轮」,用量产数据驱动的方式,打造一个数据驱动的系统,才有可能自动化的去解决99%的问题,从而才有可能用几百个人实现L4实现完全无人驾驶。

他说,这是Momenta创办以来一直秉持的理念,也是他们打造「飞轮式」L4解决方案的技术洞察。

如上图所示,整个飞轮一共有三个关键因子:量产数据、数据驱动的算法、闭环自动化。

其中,「量产数据」得益于Momenta「两条腿」战略带来的直接优势。

2016年成立到2019年中的这些时间中,Momenta并没有将太多的精力放到L4上,而是打造出了量产自动驾驶解决方案Mpilot,并将其卖给了OEM厂商和汽车产业的一级供应商。

一方面,他们可以从中得到营收回报,但更关键的是,在为客户解决问题创造价值的同时,也和客户一起回收了「量产数据」。

在Momenta的技术架构中,量产自动驾驶解决方案Mpilot和L4方案MSD采用的是统一量产传感器方案。

这也就意味着,量产传感器收集的数据,如视觉、地图、轨迹、接管等数据,可以无缝应用并有效助力MSD算法提升。与此同时,MSD也能够反馈最新的技术,来不断提升Mpilot的能力。

曹旭东透露,他们已经拿到了数个车厂量产车型的订单,随着这些车辆不断上市,将会带来大规模的数据回流——这些数据的成本近乎为零。

获取「量产数据」之后,应该怎么去发挥它们的价值,更高效的提升系统能力,是数据驱动的算法和闭环自动化要做的事情,也是解决「百万问题」的关键。

数据驱动的算法是指,Momenta投入大量精力打造的统一框架,可以自动解决数据中存在的大量的问题。

在这个技术框架下,随着量产数据的流入,算法自身会越来越「聪明」,系统不断迭代,自动化解决问题的比例也会越高。

闭环自动化,则是用来帮助数据和算法之间形成快速迭代的反馈闭环,整个过程包括对问题自动化发现、记录、标注、训练、验证等环节。

具体来说,整个过程是这样的:

1、当车辆在测试过程中收集到高价值样本时,系统就会对观测结果进行全自动标注。

2、数据积累到一定水平,就会自动触发无人工干预的模型训练迭代,完成训练。

3、模型评测自动启动,研发团队只需阅读由系统所推送的评测报告来决定模型发版,即可完成整个闭环。

而且这个过程可以不断循环,自动「消化」海量长尾数据,从而低成本、高效率地打通整个链路,而不是依靠「传统」的人工驱动,耗时耗力调参解决问题。

在曹旭东看来,在这三个核心因子的整体合力下,Momenta能够跨数量级的降低实现规模化L4的成本,也是其完全无人驾驶之路的坚实基础。

与此同时,Momenta本次也公布了其一镜到底包含全程中间技术结果的晚高峰路测视频,展示出飞轮驱动下的技术实力。

这一次,Momenta应对的场景更加复杂,但它的完全无人驾驶系统MSD应对同样得心应手。

比如路口有电动车横穿逆行:

比如实线区域突然出车,连续横穿自车行驶路径:

比如狭窄小路人车混行,遭遇三轮逆行、卡车加塞、电动车斜穿、平板车抢道的场景:

2024年,Momenta完全无人驾驶的关键节点

最后,我们再回到Momenta的路线图上。

结合「飞轮」来看,Momenta的完全无人驾驶之路,可以大致分为两个大的阶段:数据和技术上1-N的储备和大规模商业化。

关键节点是2024年。

在此之前,Momenta的聚焦点在于技术积累验证,也就是为不断优化飞轮,并推动飞轮,给飞轮早期的动力。

这个阶段,Momenta定下了两个时间节点:预计到2022年,实现算法的全流程数据驱动;到2023年,利用闭环自动化实现算法100%自动化迭代。

以及,将量产自动驾驶解决方案Mpilot卖给更多的客户,实现大规模「量产数据」回流。

与此同时,「飞轮式」L4的商业化落地——Robotaxi,也在这一时期开始0-1的验证:今年开始在苏州路测Robotaxi;2022年做到苏州Robotaxi部分车辆车端无安全员试运营。

到2024年的时候,结合量产车型大规模上市带来量产数据大规模回流,飞轮在量产数据驱动下快速转动,苏州的Robotaxi实现单车盈利。

曹旭东认为,这个时候,Momenta的商业模式已完成0-1的验证过程,数据和技术上1-N的储备也已到位,具备了快速扩张条件。

之后,便是Momenta的Robotaxi大规模落地时刻。

在他看来,Momenta将在很短的时间,在多个城市进行规模化落地,从而以最快的速度实现无人驾驶的规模化落地。

一方面在于他对Momenta扩张模式的信心:「只有在一个城市先实现单车盈利,再规模化复制到其他城市,才是无人驾驶规模化落地的最精益扩张模式。」

但更关键的是,他对Momenta「飞轮」的莫大底气:

「飞轮只要转动起来,就很难停下来了」。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 自动驾驶
    +关注

    关注

    784

    文章

    13779

    浏览量

    166350
  • 无人车
    +关注

    关注

    1

    文章

    301

    浏览量

    36469

原文标题:Momenta造“飞轮式”自动驾驶,路线图首次公布

文章出处:【微信号:cas-ciomp,微信公众号:中科院长春光机所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    关于RISC-V学习路线图推荐

    一个号的RISC-V学习路线图可以帮助学习者系统地掌握RISC-V架构的相关知识。比如以下是一个较好的RISC-V学习路线图: 一、基础知识准备 计算机体系结构基础 : 了解计算机的基本组成、指令集
    发表于 11-30 15:21

    自动驾驶HiL测试方案案例分析--ADS HiL测试系统#ADAS #自动驾驶 #VTHiL

    自动驾驶
    北汇信息POLELINK
    发布于 :2024年10月22日 15:20:19

    FPGA在自动驾驶领域有哪些优势?

    FPGA(Field-Programmable Gate Array,现场可编程门阵列)在自动驾驶领域具有显著的优势,这些优势使得FPGA成为自动驾驶技术中不可或缺的一部分。以下是FPGA在自动驾驶
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    FPGA(Field-Programmable Gate Array,现场可编程门阵列)在自动驾驶领域具有广泛的应用,其高性能、可配置性、低功耗和低延迟等特点为自动驾驶的实现提供了强有力的支持。以下
    发表于 07-29 17:09

    三星公布最新工艺路线图

    来源:综合报道 近日,三星电子在加州圣何塞的设备解决方案美国总部举办三星晶圆代工论坛(Samsung Foundry Forum, SFF),公布了其最新代工技术路线图和成果。 以下是主要亮点
    的头像 发表于 06-17 15:33 379次阅读
    三星<b class='flag-5'>公布</b>最新工艺<b class='flag-5'>路线图</b>

    英飞凌为AI数据中心提供先进的高能效电源装置产品路线图

    英飞凌科技股份公司已翻开AI系统能源供应领域的新篇章,发布了电源装置(PSU)产品路线图。该路线图在优先考虑能源效率前提下,专为满足AI数据中心当前和未来的能源需求而设计。
    发表于 06-03 18:24 606次阅读
    英飞凌为AI数据中心提供先进的高能效电源装置产品<b class='flag-5'>路线图</b>

    小马智行首批开启北京南站自动驾驶测试

    小马智行宣布开启北京南站自动驾驶路线测试,成为首批在北京开启经开区往返北京南站自动驾驶测试的企业。
    发表于 05-20 09:32 2408次阅读
    小马智行首批开启北京南站<b class='flag-5'>自动驾驶</b>测试

    事关卫星物联网!LoRaWAN 2027 发展路线图重磅公布

    4月16日,LoRa联盟(LoRaAlliance)发布了LoRaWAN开发路线图,以引导该标准未来演进的方向。LoRaWAN开发路线图LoRa作为低功耗广域网通信领域的“明星”之一
    的头像 发表于 04-26 08:06 531次阅读
    事关卫星物联网!LoRaWAN 2027 发展<b class='flag-5'>路线图</b>重磅<b class='flag-5'>公布</b>

    Momenta联合高通基于最新一代Snapdragon Ride平台发布面向先进驾驶辅助和自动驾驶功能的全新智能驾驶解决方案

    4月22日,领先的自动驾驶技术公司Momenta联合全球汽车技术创新企业高通技术公司宣布,双方面向先进驾驶辅助系统(ADAS)和自动驾驶(AD)功能推出多款可扩展的汽车智能
    发表于 04-25 08:11 778次阅读
    <b class='flag-5'>Momenta</b>联合高通基于最新一代Snapdragon Ride平台发布面向先进<b class='flag-5'>驾驶</b>辅助和<b class='flag-5'>自动驾驶</b>功能的全新智能<b class='flag-5'>驾驶</b>解决方案

    禾赛科技与Momenta签署战略合作,助力自动驾驶行业升级

    随着自动驾驶技术逐步走向成熟并得到广泛应用,提升创新、迭代效率成为技术普及和市场竞争关键环节。作为自动驾驶领域的“大脑”和“眼睛”,Momenta和禾赛科技将联手推行信息驱动的智能驾驶
    的头像 发表于 04-22 09:40 498次阅读

    禾赛科技与Momenta合作进一步拓宽智能驾驶产品战略布局

    2024年4月19日,全球激光雷达市场的领军者禾赛科技,和全球领先的自动驾驶公司Momenta在禾赛麦克斯韦智中心签署战略合作协议。
    的头像 发表于 04-20 14:22 1128次阅读
    禾赛科技与<b class='flag-5'>Momenta</b>合作进一步拓宽智能<b class='flag-5'>驾驶</b>产品战略布局

    未来已来,多传感器融合感知是自动驾驶破局的关键

    /L4级自动驾驶赛跑的元年。 马斯克评论FSD 12.3版本的左转弯操作就像人类司机一样。如果FSD 12.3版本成功,将基本颠覆目前市场上的智能驾驶技术路线。基于“数据/算法/算力”的无人
    发表于 04-11 10:26

    美国公布3D半导体路线图

    日前,美国半导体研究公司(SEMICONDUCTOR RESEARCH CORPORATION,简称SRC)公布了微电子和先进封装(MAPT)路线图,该路线图由来自工业、学术界和政府的112个组织
    的头像 发表于 03-25 17:32 705次阅读

    发展新质生产力,百度萝卜快跑开启大兴机场的自动驾驶接驳路线

    在高级别自动驾驶领域,百度萝卜快跑积极响应政府号召,率先在北京亦庄实现了车内无人自动驾驶商业化示范运营,并开启了大兴机场的自动驾驶接驳路线
    的头像 发表于 03-20 09:27 627次阅读
    发展新质生产力,百度萝卜快跑开启大兴机场的<b class='flag-5'>自动驾驶</b>接驳<b class='flag-5'>路线</b>

    纳微半导体发布最新AI数据中心电源技术路线图

    纳微半导体,作为功率半导体领域的佼佼者,以及氮化镓和碳化硅功率芯片的行业领头羊,近日公布了其针对AI人工智能数据中心的最新电源技术路线图。此举旨在满足未来12至18个月内,AI系统功率需求可能呈现高达3倍的指数级增长。
    的头像 发表于 03-16 09:39 921次阅读