0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

新的学习算法可以扩展AI的应用

倩倩 来源:绿色消费网 2020-07-20 15:03 次阅读

人工神经网络学习活动的高能耗是广泛使用人工智能AI)的最大障碍之一,特别是在移动应用中。可以从有关人脑的知识中找到解决该问题的一种方法。

尽管它具有超级计算机的计算能力,但仅需20瓦,仅相当于超级计算机的能量的百万分之一。

原因之一是大脑神经元之间的信息有效传递。神经元向其他神经元发送短的电脉冲(尖峰),但为了节省能量,仅在绝对必要的时候才会发生。

基于事件的信息处理

由TU Graz的两位计算机科学家Wolfgang Maass和Robert Legenstein领导的工作组在开发新的机器学习算法e-prop(e-propagation)时采用了这一原理。

也是欧洲灯塔计划“人脑计划”的一部分的理论计算机科学研究所的研究人员使用其模型中的峰值来实现人工神经网络中神经元之间的通信

尖峰仅在网络中的信息处理需要它们时才变为活动状态。对于这种不太活跃的网络,学习是一个特殊的挑战,因为需要更长的观察时间才能确定哪些神经元连接可以改善网络性能。

先前的方法学习成功率太低或需要巨大的存储空间。现在,E-prop通过从大脑复制的分散方法解决了这个问题,其中每个神经元在所谓的e-trace(合格跟踪)中记录何时使用其连接。该方法与最佳和最详尽的其他已知学习方法一样强大。详细信息现已发表在科学杂志《自然通讯》上。

在线而不是离线

使用当前使用的许多机器学习技术,所有网络活动都集中存储和脱机存储,以便跟踪每几个步骤在计算过程中如何使用连接。

但是,这需要在内存和处理器之间进行恒定的数据传输,这是当前AI实现过多能耗的主要原因之一。另一方面,e-prop可以完全在线运行,即使在实际操作中也不需要单独的内存,从而使学习更加节能。

神经形态硬件的驱动力

Maass和Legenstein希望e-prop将推动新一代移动学习计算系统的开发,该系统不再需要进行编程,而是根据人脑模型进行学习,从而适应不断变化的需求。

目标是不再让这些计算系统专门通过云来进行能源密集型学习,而是将大部分学习能力有效地集成到移动硬件组件中,从而节省能源

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4732

    浏览量

    100395
  • 超级计算机
    +关注

    关注

    2

    文章

    459

    浏览量

    41901
  • 人工智能
    +关注

    关注

    1789

    文章

    46576

    浏览量

    236899
收藏 人收藏

    评论

    相关推荐

    AI大模型与深度学习的关系

    人类的学习过程,实现对复杂数据的学习和识别。AI大模型则是指模型的参数数量巨大,需要庞大的计算资源来进行训练和推理。深度学习算法
    的头像 发表于 10-23 15:25 281次阅读

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    for Science的技术支撑”的学习心得,可以从以下几个方面进行归纳和总结: 1. 技术基础的深入理解 在阅读第二章的过程中,我对于AI for Science所需的技术基础有了更加深入的理解。这一章详细阐述了
    发表于 10-14 09:16

    RISC-V如何支持不同的AI和机器学习框架和库?

    RISC-V如何支持不同的AI和机器学习框架和库?还请坛友们多多指教一下。
    发表于 10-10 22:24

    平衡创新与伦理:AI时代的隐私保护和算法公平

    的发展不应背离人类的伦理道德。在推动技术创新的同时,我们必须确保每一步都走得稳健和负责。通过提高透明度、保障算法公平性、保护个人隐私权以及加强国际合作,我们可以确保AI技术的健康发展,使其成为促进社会进步和增进人类福祉的力量。
    发表于 07-16 15:07

    ai大模型和算法有什么区别

    复杂的问题。这些模型通常需要大量的数据和计算资源来训练和优化。例如,深度学习中的神经网络就是一种典型的AI大模型。 算法则是一系列解决问题的步骤和规则,它们可以应用于各种领域,包括人工
    的头像 发表于 07-16 10:09 1376次阅读

    机器学习算法原理详解

    机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器学习算法原理,包括线性回归、逻辑回归、支持向量机
    的头像 发表于 07-02 11:25 659次阅读

    机器学习的经典算法与应用

    关于数据机器学习就是喂入算法和数据,让算法从数据中寻找一种相应的关系。Iris鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被
    的头像 发表于 06-27 08:27 1535次阅读
    机器<b class='flag-5'>学习</b>的经典<b class='flag-5'>算法</b>与应用

    如何基于OrangePi AIpro开发AI推理应用

    香橙派AIpro开发板采用昇腾AI技术路线,接口丰富且具有强大的可扩展性,提供8/20TOPS澎湃算力,可广泛使用于AI边缘计算、深度视觉学习及视频流
    的头像 发表于 06-04 14:23 433次阅读
    如何基于OrangePi AIpro开发<b class='flag-5'>AI</b>推理应用

    risc-v多核芯片在AI方面的应用

    得RISC-V多核芯片能够更好地适应AI算法的不同需求,包括深度学习、神经网络等,从而提高芯片的性能和效率,降低成本,使AI边缘计算晶片更具竞争力。 再者,RISC-V的多核设计
    发表于 04-28 09:20

    扩展包x-cube-ai能实现SVM支持向量机吗?

    扩展包x-cube-ai能实现SVM支持向量机嘛
    发表于 03-22 07:26

    ai芯片是什么东西 ai芯片和普通芯片的区别

    AI芯片是专门为人工智能应用设计的处理器,它们能够高效地执行AI算法,特别是机器学习和深度学习任务。
    的头像 发表于 03-21 18:11 5905次阅读

    NanoEdge AI的技术原理、应用场景及优势

    NanoEdge AI 是一种基于边缘计算的人工智能技术,旨在将人工智能算法应用于物联网(IoT)设备和传感器。这种技术的核心思想是将数据处理和分析从云端转移到设备本身,从而减少数据传输延迟、降低
    发表于 03-12 08:09

    AI算法的本质是模拟人类智能,让机器实现智能化

    电子发烧友网报道(文/李弯弯)AI算法是人工智能领域中使用的算法,用于模拟、延伸和扩展人的智能。这些算法
    的头像 发表于 02-07 00:07 5491次阅读

    目前主流的深度学习算法模型和应用案例

    深度学习在科学计算中获得了广泛的普及,其算法被广泛用于解决复杂问题的行业。所有深度学习算法都使用不同类型的神经网络来执行特定任务。
    的头像 发表于 01-03 10:28 1630次阅读
    目前主流的深度<b class='flag-5'>学习</b><b class='flag-5'>算法</b>模型和应用案例

    深度学习技术在AI智能分析盒子人数统计中的应用与优势

    AI盒子的人数统计中,当多人同时出入视野范围时,传统的算法模型很难准确识别和计算人数,容易导致重复统计。为解决这一难题,AI算法模型可以
    的头像 发表于 11-29 09:07 472次阅读