本篇文章节选自安森美半导体原创文章《安森美半导体领先的智能感知技术和方案应对工业人工智能应用挑战》。本篇文章是此次系列文章的第一篇,完整文章共两篇,第二篇将于本周三发布,欢迎大家持续关注~
工业机器视觉、机器人、人工智能技术的发展正配合着政府的智能制造计划向前推进,图像传感器是其中的关键技术,其在工业中的应用很广,包括智能交通、高端安防监控、电影拍摄、医疗影像、生物识别、天文相机,以及常见的机器视觉在工业自动化生产的应用,不同的应用对图像的分辨率、清晰度、噪声、以及相机的帧率、系统成本等都有不同的要求,同时工业中人工智能应用的发展给图像传感器带来了更高的挑战,包括推动了全局快门性能、高速拍摄、大分辨率、使用不可见光谱区域和三维体积深度提供的信息进行关键推断,以及神经网络处理的发展。安森美半导体是工业机器视觉的领袖之一,具备全方位的产品阵容并不断开发出领先的技术,解决上述挑战并推动创新。
高效的工业生产需要机器视觉给出快速又精准的决策
在生产线上用于测量的相机要能快速判断液位、尺寸,用来定位的相机系统要能快速准确的给出正确的物品位置,及时通知机械手臂在哪里寻找抓取物品,用作计件检验的相机系统要能够快速计算出数量,是否溢出,用作解码识别的相机系统要能够快速准确识别二维码,字符信息等。相机系统做出快速精准决策的关键就是图像能够清晰准确的提供这些信息,不同的检测应用对图像的分辨率、清晰度、噪声、以及相机的帧率、系统成本等都有不同的要求。
随着工业自动化的发展,检测种类的多样性,驱使图像传感器不断的更新换代,工艺一直在突破提升。这个发展从安森美半导体的几代CMOS产品系列中可见一斑:
在2005年推出的LUPA系列
开始有了高速输出接口
接下来2010年推出的VITA系列
在全局快门性能上有了很大了提升,支持卷帘快门和全局快门两种模式,
在2014年推出的PYTHON系列
增加了像素内图像矫正,有效的优化了全局快门传感器的噪声性能,
2019年刚推出的XGS系列
使用了减少节点的像素工艺对噪声和图像一致性更是有了飞跃般的提升,今后安森美半导体将会在工业级图像传感器使用背照式和堆栈式工艺来推动图像传感器的进一步发展。
随着工艺的提升,图像传感器的像元越来越小,但它却可以达到大尺寸像元的图像效果,这就使传感器的分辨率可以越做越大,带宽也越来越高,也推动了整体相机系统的提升和发展,来满足工业生产快速精确的推断和决策。
人工智能是新工具
快速精确的决策需求推动整个生态系统来实现高级数据收集和推断,提供了真正进入工业4.0的机会,人工智能(AI)正是需要的新工具,用来管理工业系统成像不断增长的数据集。
AI可以通过自适应制造、自动质量控制、预测性维护等方案有效地应对当今制造业面临的挑战,如工厂中的PCB板检测、钣金缺陷检测、食品卫生检测、零部件均匀度检测、平板检测的应用中,工厂操作员的疲劳会影响对产品质量的一致性评估,但是机器视觉相机和深度学习解决了这个问题。如今,AI已用于60%以上的计算机视觉应用中,而AI在制造应用中的增长已超过50%年复合增长率。
工业中AI应用的发展给图像传感器带来了更高的挑战,包括推动了全局快门性能、高速拍摄、高分辨率、使用不可见光谱区域和三维体积深度提供的信息进行关键推断,以及神经网络处理的发展。
全局快门:实现高速视觉成像的关键
传统的卷帘快门图像传感器可为静态或慢速移动的物体成像提供出色的灵敏度。但全局快门在检测快速移动物体的工业应用中至关重要。
如高速装配线的机器视觉检测之类的任务需要准确的判断,全局快门图像传感器通过完全同时同步曝光捕获所有像素,来消除使用卷帘快门传感器逐行曝光带来的空间失真变形的效果,正确还原了运动物体的真实样子,接下来才能进行强大的AI分类计算。
如安森美半导体的全局快门图像传感器XGS 2000,以220 fps的速度捕获高质量、精确和快速移动的200万像素全局快门图像场景,可以为物流和工业扫描仪等不同场景下应用提供清晰、低噪声的图像。
图1:卷帘快门vs. 全局快门
高速也是快速移动物体检测的工业应用另一个至关重要点。高速装配线的机器视觉检查需要快速的帧率和较短的积分时间,可以使用短曝光和快速读出消除图像模糊的效果。工厂的视觉检测基本都是对应高速移动的物体,特别是工厂高速运转的生产线上,传送带的速度特别快,那么在最短的时间内成像读出数据,减少或消除拍摄图像中的运动模糊,才能利用AI算法实现正确的智能判断和快速决策。
-
图像传感器
+关注
关注
68文章
1876浏览量
129431 -
安森美半导体
+关注
关注
17文章
565浏览量
60949 -
人工智能
+关注
关注
1791文章
46761浏览量
237351
原文标题:领先的智能感知技术和方案应对工业人工智能应用挑战 第一篇
文章出处:【微信号:onsemi-china,微信公众号:安森美】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论