0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

三星基于Arm的eMRAM编译器IP提供IC测试解决方案

lhl545545 来源:中电网 作者:中电网 2020-08-17 15:05 次阅读

近年来,在人工智能AI)、5G等推动下,以MRAM(磁阻式随机存取存储器)、铁电随机存取存储器 (FRAM)、相变随机存取存储器(PRAM),以及可变电阻式随机存取存储器(RRAM)为代表的新兴存储技术逐渐成为市场热点。这些新技术吸引各大晶圆厂不断投入,最具代表性的厂商包括台积电、英特尔三星和格芯(Globalfoundries)。

那么,这些新兴存储技术为什么会如此受期待呢?主要原因在于:随着半导体制造技术持续朝更小的技术节点迈进,传统的DRAM和NAND Flash面临越来越严峻的微缩挑战,DRAM 已接近微缩极限,而NAND Flash则朝3D方向转型。

此外,传统存储技术在高速运算上也遭遇阻碍,处理器与存储器之间的“墙”成为了提升运算速度和效率的最大障碍。特别是AI的发展,数据需求量暴增,“墙”的负面效应愈加突出,越来越多的半导体厂商正在加大对新兴存储技术的研发和投资力度,寻求成本更佳、速度更快、效能更好的存储方案。

从目前来看,最受期待的就是MRAM,各大厂商在它上面投入的力度也最大。MRAM属于非易失性存储技术,是利用具有高敏感度的磁电阻材料制造的存储器,断电时,MRAM储存的数据不会丢失,且耗能较低,读写速度快,可媲美SRAM,比Flash速度快百倍,在存储容量方面能替代DRAM,且数据保存时间长,适合高性能应用。

MRAM的基本结构是磁性隧道结,研发难度高,目前主要分为两大类:传统MRAM和STT-MRAM,前者以磁场驱动,后者则采用自旋极化电流驱动。

另外,相较于DRAM、SRAM和NAND Flash等技术面临的微缩困境,MRAM可满足制程进一步微缩需求。目前,DRAM制程工艺节点为1X nm,已接近极限,而Flash走到20 nm以下后,就朝3D制程转型了。MRAM制程则可推进至10nm以下。

诸神争霸

在过去几年里,包括台积电、英特尔、三星、格芯等晶圆代工厂和IDM,相继大力投入MRAM 研发,而且主要着眼于STT-MRAM,也有越来越多的嵌入式解决方案诞生,用以取代Flash、EEPROM和SRAM。

台积电

早在2002年,台积电就与中国台湾地区工研院签订了MRAM合作发展计划。近些年,该公司一直在开发22nm制程的嵌入式STT-MRAM,采用超低漏电CMOS技术。

2018年,台积电进行了eMRAM芯片的“风险生产”,2019年生产采用22nm制程的eReRAM芯片。

2019年,台积电在嵌入式非易失性存储器技术领域达成数项重要的里程碑:在40nm制程方面,该公司已成功量产Split-Gate(NOR)技术,支持消费类电子产品应用,如物联网、智慧卡和MCU,以及各种车用电子产品。在28nm制程方面,该公司的嵌入式快闪存储器支持高能效移动计算和低漏电制程平台。

在ISSCC 2020上,台积电发布了基于ULL 22nm CMOS工艺的32Mb嵌入式STT-MRAM。该技术基于台积电的22nm ULL(Ultra-Low-Leakage)CMOS工艺,具有10ns的极高读取速度,读取功率为0.8mA/MHz/bit。对于32Mb数据,它具有100K个循环的写入耐久性,对于1Mb数据,具有1M个循环的耐久性。它支持在260°C下进行90s的IR回流焊,在150°C下10年的数据保存能力。它以1T1R架构实现单元面积仅为0.046平方微米,25°C下的32Mb阵列的漏电流仅为55mA。

目前,台积电已经完成22nm嵌入式STT-MRAM技术验证,进入量产阶段。在此基础上,该公司还在推进16 nm 制程的STT-MRAM研发工作。

除了MRAM,台积电也在进行着ReRAM的研发工作,并发表过多篇基于金属氧化物结构的ReRAM论文。

本周,台湾地区工研院电光所所长吴志毅表示,由于新兴存储技术将需要整合逻辑制程技术,因此现有存储器厂商要卡位进入新市场,门槛相对较高,而台积电在这方面具有先天优势,因为该公司拥有很强的逻辑制程生产能力,因此,台积电跨入新兴存储市场会具有竞争优势。

据悉,台湾地区工研院在新兴存储技术领域研发投入已超过10年,通过元件创新、材料突破、电路优化等方式,开发出了更快、更耐久、更稳定、更低功耗的新一代存储技术,目前,正在与台积电在这方面进行合作。未来,台积电在新兴存储器发展方面,工研院将会有所贡献,但具体内容并未透露。

三星

三星在MRAM研发方面算是起步较早的厂商,2002年就开始了这项工作,并于2005年开始进行STT-MRAM的研发,之后不断演进,到了2014年,生产出了8Mb的eMRAM。

三星Foundry业务部门的发展路径主要分为两条,从28nm节点开始,一条是按照摩尔定律继续向下发展,不断提升FinFET的工艺节点,从14nm到目前的7nm,进而转向下一步的5nm。

另一条线路就是FD-SOI工艺,该公司还利用其在存储器制造方面的技术和规模优势,着力打造eMRAM,以满足未来市场的需求。这方面主要采用28nm制程。

三星28nm制程FD-SOI(28FDS)嵌入式NVM分两个阶段。第一个是2017年底之前的电子货币风险生产,第二个是2018年底之前的eMRAM风险生产。并同时提供eFlash和eMRAM(STT-MRAM)选项。

该公司于2017年研制出了业界第一款采用28FDS工艺的eMRAM测试芯片。

2018年,三星开始在28nm平台上批量生产eMRAM。2019年3月,该公司推出首款商用eMRAM产品。据悉,eMRAM模块可以通过添加三个额外的掩膜集成到芯片制造工艺的后端,因此,该模块不必要依赖于所使用的前端制造技术,允许插入使用bulk、FinFET或FD-SOI制造工艺生产的芯片中。三星表示,由于其eMRAM在写入数据之前不需要擦除周期,因此,它比eFlash快1000倍。与eFlash相比,它还使用了较低的电压,因此在写入过程中的功耗极低。

2018年,Arm发布了基于三星28FDS工艺技术的eMRAM编译器IP,包括一个支持18FDS (18nm FD-SOI工艺)的eMRAM编译器。这一平台有助于推动在5G、AI、汽车、物联网和其它细分市场的功耗敏感应用领域的前沿设计发展。

2019年,三星发布了采用28FDS工艺技术的1Gb嵌入STT-MRAM。基于高度可靠的eMRAM技术,在满足令人满意的读取,写入功能和10年保存时间的情况下,可以实现90%以上的良率。并且具备高达1E10周期的耐久性,这些对于扩展eMRAM应用有很大帮助。

2019年底,Mentor宣布将为基于Arm的eMRAM编译器IP提供IC测试解决方案,该方案基于三星的28FDS工艺技术。据悉,该测试方案利用了MentorTessent Memory BIST,为SRAM和eMRAM提供了一套统一的存储器测试和修复IP。

Globalfoundries

2017年,时任Globalfoundries首席技术官的Gary Patton称,Globalfoundries已经在其22FDX(22nm制程的FD-SOI工艺技术)制程中提供了MRAM,同时也在研究另一种存储技术。

由于Globalfoundries重点发展FD-SOI技术,特别是22nm制程的FD-SOI,已经很成熟,所以该公司的新兴存储技术,特别是MRAM,都是基于具有低功耗特性的FD-SOI技术展开的。

今年年初,Globalfoundries宣布基于22nm FD-SOI 平台的eMRAM投入生产。该eMRAM技术平台可以实现将数据保持在-40°C至+125°C的温度范围内,寿命周期可以达到100,000,可以将数据保留10年。该公司表示,正在与多个客户合作,计划在2020年安排多次流片。

据悉,该公司的eMRAM旨在替代NOR闪存,可以定期通过更新或日志记录进行重写。由于是基于磁阻原理,在写入所需数据之前不需要擦除周期,大大提高了写入速度,宏容量从4-48Mb不等。

英特尔

英特尔也是MRAM技术的主要推动者,该公司采用的是基于FinFET技术的22 nm制程。

2018年底,英特尔首次公开介绍了其MRAM的研究成果,推出了一款基于22nm FinFET制程的STT-MRAM,当时,该公司称,这是首款基于FinFET的MRAM产品,并表示已经具备该技术产品的量产能力。

结语

由于市场需求愈加凸显,且有各大晶圆厂大力投入支持,加快了以MRAM为代表的新兴存储技术的商业化进程。未来几年,虽然DRAM和NAND Flash将继续站稳存储芯片市场主导地位,但随着各家半导体大厂相继投入发展,新兴存储器的成本将逐步下降,可进一步提升 MRAM等技术的市场普及率。
责任编辑:pj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    19170

    浏览量

    229182
  • 三星电子
    +关注

    关注

    34

    文章

    15856

    浏览量

    180929
  • 存储器
    +关注

    关注

    38

    文章

    7454

    浏览量

    163613
收藏 人收藏

    评论

    相关推荐

    是德科技助力三星电子验证FiRa 2.0安全测距测试用例

    是德科技(Keysight Technologies,Inc.)成功助力三星电子,在其Exynos Connect U100芯片组上验证了FiRa 2.0安全测试用例。此次验证得益于是德科技提供的超宽带 (UWB)
    的头像 发表于 11-18 10:08 125次阅读

    ARM优化C/C++编译器 v20.2.0.LTS

    电子发烧友网站提供ARM优化C/C++编译器 v20.2.0.LTS.pdf》资料免费下载
    发表于 11-07 10:46 0次下载
    <b class='flag-5'>ARM</b>优化C/C++<b class='flag-5'>编译器</b> v20.2.0.LTS

    C7000优化C/C++编译器

    电子发烧友网站提供《C7000优化C/C++编译器.pdf》资料免费下载
    发表于 10-30 09:45 0次下载
    C7000优化C/C++<b class='flag-5'>编译器</b>

    采用Arm AE IP产品组合实现SDV功能安全

    Arm 汽车增强 (AE) IP 产品组合。然而,Arm 的功能安全策略不仅仅局限于硬件,还通过提供软件测试库 (STL)、工具和
    的头像 发表于 09-03 11:47 1464次阅读
    采用<b class='flag-5'>Arm</b> AE <b class='flag-5'>IP</b>产品组合实现SDV功能安全

    AI编译器技术剖析

    随着人工智能技术的飞速发展,AI编译器作为一种新兴的编译技术逐渐进入人们的视野。AI编译器不仅具备传统编译器的功能,如将高级语言编写的源代码转换为机器可执行的代码,还融入了人工智能技术
    的头像 发表于 07-17 18:28 1487次阅读

    人工智能编译器与传统编译器的区别

    人工智能编译器(AI编译器)与传统编译器在多个方面存在显著的差异。这些差异主要体现在设计目标、功能特性、优化策略、适用范围以及技术复杂性等方面。以下是对两者区别的详细探讨,旨在全面解析其内在差异。
    的头像 发表于 07-17 18:19 1715次阅读

    三星否认HBM3E通过英伟达测试传闻

    近期,有媒体报道称三星电子已成功通过英伟达(NVIDIA)的HBM3E(高带宽内存)质量测试,并预计很快将启动量产流程,以满足市场对高性能存储解决方案的迫切需求。然而,这一消息迅速遭到了三星
    的头像 发表于 07-05 15:08 686次阅读

    Meta发布基于Code Llama的LLM编译器

    近日,科技巨头Meta在其X平台上正式宣布推出了一款革命性的LLM编译器,这一模型家族基于Meta Code Llama构建,并融合了先进的代码优化和编译器功能。LLM编译器的推出,标志着Meta在人工智能领域的又一重大突破,将
    的头像 发表于 06-29 17:54 1461次阅读

    三星电子将为代工业务提供人工智能解决方案

    三星电子公司近日宣布,将为其代工客户提供一套全面的“一站式”人工智能解决方案,以满足市场对高性能、低功耗人工智能芯片技术的迫切需求。
    的头像 发表于 06-15 09:42 512次阅读

    英伟达否认三星HBM未通过测试

    英伟达公司CEO黄仁勋近日就有关三星HBM(高带宽内存)的传闻进行了澄清。他明确表示,英伟达仍在认证三星提供的HBM内存,并否认了三星HBM未通过英伟达任何
    的头像 发表于 06-06 10:06 529次阅读

    三星电子正按计划推进eMRAM内存制程升级

    三星电子在昨日举行的韩国“AI-PIM 研讨会”上宣布,其正按计划稳步进行eMRAM(嵌入式磁性随机存取内存)的制程升级工作。据悉,目前8nm eMRAM的技术开发已经基本完成,这一进展标志着
    的头像 发表于 06-04 09:35 385次阅读

    LitePoint与三星电子合作支持FiRa 2.0物理层安全测距测试用例

    先进无线测试解决方案提供商LitePoint与三星电子宣布紧密合作,支持FiRa 2.0物理层(PHY)一致性测试规范内定义的新安全
    的头像 发表于 05-16 11:26 534次阅读

    三星电子在美国硅谷设立人工智能芯片实验室

    目前,三星电子的大多数处理产品仍依赖 ARM 架构,这使得其在设计上受到限制,且需向 ARM 支付较高的 IP 授权费。然而,RISC-V
    的头像 发表于 04-19 16:45 654次阅读

    QT开发学习笔记1(安装交叉编译器

    QT安装交叉编译器
    的头像 发表于 02-18 10:02 867次阅读
    QT开发学习笔记1(安装交叉<b class='flag-5'>编译器</b>)

    TVM编译器的整体架构和基本方法

    有将近两个月没有学习一些新东西,更新一下博客了。一直在忙公司的一个项目,是做一款支持LSTM和RNN的通用架构加速IP。自己恰好负责指令编译工作,虽然开始的指令比较粗糙,没有一套完整的编译器架构
    的头像 发表于 11-30 09:36 2319次阅读
    TVM<b class='flag-5'>编译器</b>的整体架构和基本方法