0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

科学家将开发深度学习框架,以将机器学习集成到神经影像研究中

如意 来源: 爱云资讯 作者: 爱云资讯 2020-08-17 17:30 次阅读

佐治亚州立大学的研究人员与麻省理工学院(MIT)和麻省总医院(MGH)的同事们通过推进获得了美国国立卫生研究院脑研究的 250万美元赠款创新性神经技术(BRAIN) 研究计划,旨在彻底改变科学家对人脑的理解。

该团队将开发Nobrainer(一种用于3D图像处理的开源深度学习框架),以将机器学习集成到神经影像研究和临床应用中。

佐治亚州立大学计算机科学副教授,研究资助机构负责人谢尔盖·普利斯(Sergey Plis)表示:“人工智能和深度学习的进步可以帮助研究人员从大脑扫描中获取更多见解,同时减少处理数据所需的时间。” 。“例如,我们可以了解有关精神疾病或衰老如何影响大脑结构的细节。”

能够阐明这类复杂模式的模型非常耗费数据,而组装庞大的大脑数据集具有挑战性,特别是对于小型研究小组而言。

“当Google想要创建一个聊天机器人时,他们可以使用每次互联网搜索中的数据来训练它,”同时也是神经影像和数据科学转化研究中心机器学习核心主管的Plis说 。“但是,对于脑成像仪来说,障碍可能太高。收集成千上万的大脑扫描以及训练所需的硬件非常昂贵,并且您必须匿名化数据才能解决隐私问题。”

该团队由 麻省理工学院 的 Satrajit Ghosh ,MGH的Bruce Fischl和Plis领导。他们计划创建深度神经网络,该网络已经接受了来自65,000多人的脑部扫描的培训。他们将把该技术作为一组广泛使用的工具和神经科学家的现成模型进行传播。工具和产生的模型将被标准化,以确保科学家们可以获得可比的结果并更轻松地共享它们,而无需担心患者的机密性。

团队正在开发一种独特的功能,其中的模型可以批判他们所知道的信息,量化自己分析中的不确定性程度,并报告可能存在错误的地方。这可以帮助科学家确定何时信任该模型以及何时需要收集更多数据。随着越来越多的研究人员使用模型,提出新的问题或将模型调整为新的数据集,这些工具将继续学习,变得更加准确。

普利斯说:“模型传播得越远,就像土豆一样,变得更好。” “当您正在研究以不可预测的方式影响大脑的事物(例如中风)时,您需要大量数据,因为患者预后会存在很多差异。借助热土豆学习方式,该模型逐渐吸收了这种可变性,并且在进行预测时变得更好。”

该工具的另一个主要优点是该工具具有比可用模型快得多的数据处理能力。研究团队对Nobrainer进行了培训,使其做出与Freesurfer相同的预测,Freesurfer是MGH开发的同类最佳的MRI分析工具。初步研究表明,这项技术的性能优于Freesurfer,在几分钟到几小时内进行了一些相同的计算。该团队计划使用他们的工具来自动化和加速Freesurfer平台的其他部分以及其他类型的神经成像分析。减少执行复杂分析所需的时间,可以加快关于大脑的科学和临床发现。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4764

    浏览量

    100545
  • 人工智能
    +关注

    关注

    1791

    文章

    46872

    浏览量

    237606
  • 深度学习
    +关注

    关注

    73

    文章

    5493

    浏览量

    120983
收藏 人收藏

    评论

    相关推荐

    Arm成功Arm KleidiAI软件库集成腾讯自研的Angel 机器学习框架

    Arm 与腾讯携手合作,成功 Arm KleidiAI 软件库集成腾讯自研的 Angel 机器学习
    的头像 发表于 11-24 15:33 476次阅读

    蚂蚁集团收购边塞科技,吴翼出任强化学习实验室首席科学家

    领域的研究与发展。令人瞩目的是,边塞科技的创始人吴翼已正式加入该实验室,并担任首席科学家一职。 吴翼在其个人社交平台上对这一变动进行了回应。他表示,自己最近接受了蚂蚁集团的邀请,负责大模型强化学习领域的
    的头像 发表于 11-22 11:14 306次阅读

    卷积神经网络的实现工具与框架

    卷积神经网络因其在图像和视频处理任务的卓越性能而广受欢迎。随着深度学习技术的快速发展,多种实现工具和框架应运而生,为
    的头像 发表于 11-15 15:20 208次阅读

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究的核心技术,包括机器学习深度学习神经
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习深度
    发表于 10-14 09:12

    NVIDIA推出全新深度学习框架fVDB

    在 SIGGRAPH 上推出的全新深度学习框架可用于打造自动驾驶汽车、气候科学和智慧城市的 AI 就绪型虚拟表示。
    的头像 发表于 08-01 14:31 526次阅读

    PyTorch深度学习开发环境搭建指南

    PyTorch作为一种流行的深度学习框架,其开发环境的搭建对于深度学习
    的头像 发表于 07-16 18:29 857次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文介绍
    的头像 发表于 07-05 09:47 820次阅读

    深度学习与卷积神经网络的应用

    到自然语言处理,深度学习和CNN正逐步改变着我们的生活方式。本文深入探讨深度学习与卷积神经网络
    的头像 发表于 07-02 18:19 813次阅读

    TensorFlow与PyTorch深度学习框架的比较与选择

    深度学习作为人工智能领域的一个重要分支,在过去十年取得了显著的进展。在构建和训练深度学习模型的过程
    的头像 发表于 07-02 14:04 891次阅读

    新华社:突破性成果!祝贺我国科学家成功研发这一传感器!

    6月25日,新华社《突破性成果!祝贺我国科学家》为标题,报道了由我国科学家研发的传感器成果。 我国科学家研发高通道神经探针实现猕猴全脑尺度
    的头像 发表于 06-27 18:03 438次阅读
    新华社:突破性成果!祝贺我国<b class='flag-5'>科学家</b>成功研发这一传感器!

    FPGA在深度学习应用取代GPU

    AI 框架模型映射到硬件架构。 Larzul 的公司 Mipsology 希望通过 Zebra 来弥合这一差距。Zebra 是一种软件平台,开发者可以轻松地
    发表于 03-21 15:19

    人工智能和机器学习的顶级开发板有哪些?

    机器学习(ML)和人工智能(AI)不再局限于高端服务器或云平台。得益于集成电路(IC)和软件技术的新发展,在微型控制器和微型计算机上实现机器学习
    的头像 发表于 02-29 18:59 768次阅读
    人工智能和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的顶级<b class='flag-5'>开发</b>板有哪些?

    【技术科普】主流的深度学习模型有哪些?AI开发工程师必备!

    深度学习科学计算获得了广泛的普及,其算法被广泛用于解决复杂问题的行业。所有深度学习算法都使用
    的头像 发表于 01-30 15:26 582次阅读
    【技术科普】主流的<b class='flag-5'>深度</b><b class='flag-5'>学习</b>模型有哪些?AI<b class='flag-5'>开发</b>工程师必备!

    详解深度学习神经网络与卷积神经网络的应用

    处理技术也可以通过深度学习来获得更优异的效果,比如去噪、超分辨率和跟踪算法等。为了跟上时代的步伐,必须对深度学习神经网络技术有所
    的头像 发表于 01-11 10:51 1918次阅读
    详解<b class='flag-5'>深度</b><b class='flag-5'>学习</b>、<b class='flag-5'>神经</b>网络与卷积<b class='flag-5'>神经</b>网络的应用