0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自动驾驶汽车借用各种各样的传感器检测物体并跟踪其行进速度与方向

lhl545545 来源:科技行者 作者:科技行者 2020-08-21 10:40 次阅读

埃隆·马斯克曾经多次强调,特斯拉公司将在2020年年底之前打造出全自动驾驶汽车。“这方面存在很多小问题,最大的挑战就是如何把这些小问题全数解决掉,再整合进一套统一的系统当中。”

虽然这种完全无需人为干预就能应对旅程中种种状况的汽车(业界称之为「L5级自动驾驶」)也许正在走近,但实际生产出能够安全合法上路的自动汽车却又是另一码事。

全自动驾驶汽车之所以迟迟上不了路,是因为其中仍存在着不少根本性挑战。下面来看五大最为核心的障碍。

1. 传感器

自动驾驶汽车使用各种各样的传感器以“观察”周边环境,帮助系统检测诸如行人、其他车辆以及路标等物体。摄像头负责帮助汽车获得视觉,激光雷达负责测量物体与车辆之间的距离,普通雷达则检测物体并跟踪其行进速度与方向。

这些传感器会不断将数据馈送至汽车的控制系统或计算机端,借此决定应在哪里转向或者何时进行制动。全自动驾驶汽车需要一套能够在一切条件及环境下,准确检测物体、距离、速度等指标的传感器,且全程无需人为介入。

但恶劣的天气、繁忙的交通以及带有涂鸦的道路标志,都会对传感器的识别能力产生负面影响。特斯拉使用的雷达虽然不太容易受到恶劣天气条件的影响,但却仍无法达到全自动驾驶汽车对于物体检测水平的严苛要求。

就目前的情况看,特斯拉的“autopilot”L2级自动驾驶已经酿成过不少事故,包括今年7月撞上了其他驻停车辆。事实证明,该公司的传感器在应对全天候行驶场景时,还有很长的路要走。

2. 机器学习

大部分自动驾驶汽车使用人工智能与机器学习处理来自传感器的数据,并根据结合做出关于下一步行动的具体决策。这些算法将帮助系统识别传感器检测到的目标,并根据训练经验将目标分类为行人、路灯等。最后,汽车再使用此信息确定是否需要回避检测到的物体,以及接下来需要采取哪些行动——例如制动或转弯等。

未来,机器也许会拥有比人类驾驶员更高效的对象检测与分类能力。但至少就目前来看,汽车中所使用的机器学习算法仍然缺少充分的安全性依据。在如何训练、测试或验证机器学习算法方面,各标准化机构乃至整个自动驾驶行业都还没有达成共识。

3. 开放道路

自动驾驶汽车在驶入开放道路之后,还将继续自己的学习过程。它会在新的路段上行驶,检测出训练中从未遇到过的物体,并据此进行软件更新。

那么,我们该如何保证系统能够始终拥有与已验证版本拥有相同的安全性?我们必须能够证明一切新的学习结论都安全可靠,且系统不会忘记之前掌握的安全知识。遗憾的 是,业界目前对此还没有统一的解决思路。

4. 监管要求

不单是自动驾驶领域,目前还没有哪个行业针对自主系统出台充分的标准与法规。现有车辆安全性的标准假设,要求驾驶员能够在紧急情况下立即接管。

对于自动驾驶汽车,法规只针对某些特殊功能(例如自动车道保持系统)做出了规定。至于包括自动驾驶汽车在内的自动驾驶系统,虽然已经有国际标准设定了部分相关要求,但暂时还没有解决之前提到的传感器、机器学习与行为学习方面的问题。

因此,只要没有公认的法规与标准,自动驾驶汽车无论是否安全、都无权在开放道路上正常行驶。

5. 社会接受度

特斯拉目前的自动驾驶功能已经先后引发多起事故。由此引发的社会认可度低下问题不仅来自打算购买这类产品的用户,也来自与这类用户共享道路的其他交通参与者。

公众需要参与到自动驾驶汽车的引入与采用决策当中。如果缺少这个环节,此项技术就有可能被人民群众拒之门外。

很明显,只有解决了前三项挑战,我们才有机会攻克最后两个障碍。目前,业界各方都在争取成为第一家推出全自动驾驶汽车的厂商。但是,如果我们未能就实现汽车安全、提供安全证明以及通过监管机构/公众合作取得认可接纳达成共识,那么自动驾驶汽车在未来几年中仍然只能长期处于测试阶段。

对于马斯克这样的企业家来说,这样的现状无疑令人沮丧。但正是因为遍布荆棘,率先在安全、保障、法规与接纳度等领域取得突破的厂商,才能发展为新的巨头、并引领整个新的时代。
责任编辑:pj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2548

    文章

    50656

    浏览量

    751803
  • 机器学习
    +关注

    关注

    66

    文章

    8375

    浏览量

    132397
  • 自动驾驶
    +关注

    关注

    783

    文章

    13679

    浏览量

    166110
收藏 人收藏

    评论

    相关推荐

    MEMS技术在自动驾驶汽车中的应用

    中的核心作用 MEMS传感器以其微小但功能强大的特性,在自动驾驶汽车中发挥着至关重要的作用。它们能够实时监测和控制车辆的各种参数,为自动驾驶
    的头像 发表于 11-20 10:19 138次阅读

    汽车雷达回波发生的技术原理和应用场景

    和可靠性。这有助于自动驾驶系统更好地适应各种道路和天气条件,提高自动驾驶的安全性和稳定性。 碰撞预警系统的测试:碰撞预警系统是汽车安全性的重要组成部分。
    发表于 11-15 14:06

    使用STT全面提升自动驾驶中的多目标跟踪

    3D多目标跟踪(3D MOT)在各种机器人应用中发挥着关键作用,例如自动驾驶车辆。为了在驾驶时避免碰撞,机器人汽车必须可靠地
    的头像 发表于 10-28 10:07 162次阅读
    使用STT全面提升<b class='flag-5'>自动驾驶</b>中的多目标<b class='flag-5'>跟踪</b>

    FPGA在自动驾驶领域有哪些优势?

    领域的主要优势: 高性能与并行处理能力: FPGA内部包含大量的逻辑门和可配置的连接,能够同时处理多个数据流和计算任务。这种并行处理能力使得FPGA在处理自动驾驶中复杂的图像识别、传感器数据处理等
    发表于 07-29 17:11

    FPGA在自动驾驶领域有哪些应用?

    低,适合用于实现高效的图像算法,如车道线检测、交通标志识别等。 雷达和LiDAR处理:自动驾驶汽车通常会使用雷达和LiDAR(激光雷达)等多种传感器来获取环境信息。FPGA能够协助完成
    发表于 07-29 17:09

    自动驾驶传感器技术介绍

    自动驾驶传感器技术是自动驾驶系统的核心组成部分,它使车辆能够感知理解周围环境,从而做出智能决策。以下是对自动驾驶
    的头像 发表于 07-23 16:08 2061次阅读

    自动驾驶汽车传感器有哪些

    自动驾驶汽车传感器是实现自动驾驶功能的关键组件,它们通过采集和处理车辆周围环境的信息,为自动驾驶系统提供必要的感知和决策依据。以下是对
    的头像 发表于 07-23 16:00 2021次阅读

    XV7181BB 陀螺仪传感器自动驾驶设备中的应用

    输出、宽工作温度范围和优异的温度偏置稳定性,为自动驾驶设备在各种复杂驾驶环境中的稳定运行提供了强大的支持。低功耗设计和内置的温度传感器、数
    的头像 发表于 06-13 15:23 435次阅读
    XV7181BB 陀螺仪<b class='flag-5'>传感器</b>在<b class='flag-5'>自动驾驶</b>设备中的应用

    揭秘自动驾驶:未来汽车的感官革命,究竟需要哪些超级传感器

    来源:LANCI澜社汽车,谢谢 编辑:感知芯视界 Link 随着自动驾驶技术的发展,我们已进入一个技术瓶颈期。在这一背景下,汽车制造商开始将注意力转向自动驾驶的关键组成部分——
    的头像 发表于 05-31 09:14 530次阅读

    未来已来,多传感器融合感知是自动驾驶破局的关键

    模态精准感知信息,使自动驾驶系统可以实时精准地感知道路上的各种状况。 昱感微融合感知产品方案创新性地 将可见光摄像头、红外摄像头以及4D毫米波雷达的探测数据在前端(数据获取时)交互,将各传感器的探测
    发表于 04-11 10:26

    探索自动驾驶传感器仿真模型的可信度

    环境感知作为实现自动驾驶的首要环节,主要是通过智能网联汽车搭载的视觉相机、激光雷达、毫米波雷达等传感器感知周围的道路环境快速准确的获取周围目标的类别、位置、尺寸和
    发表于 03-22 12:34 1147次阅读
    探索<b class='flag-5'>自动驾驶</b><b class='flag-5'>传感器</b>仿真模型的可信度

    CMOS图像传感器自动驾驶汽车提供视觉感知

    来源:安森美,谢谢 编辑:感知芯视界 Link 要实现全自动驾驶汽车,需要整合来自多种传感器的信息,其中摄像头的信息可能是最重要的。这些摄像头必须能够在各种条件下连续捕捉最微小的细节,
    的头像 发表于 02-27 09:28 473次阅读

    常用的焊缝自动跟踪传感器有哪些

    跟踪焊缝的位置,从而提高焊接质量和效率。以下是一些常用的焊缝自动跟踪传感器:   激光位移传感器 激光位移
    的头像 发表于 02-21 15:46 686次阅读
    常用的焊缝<b class='flag-5'>自动</b><b class='flag-5'>跟踪</b><b class='flag-5'>传感器</b>有哪些

    LabVIEW开发自动驾驶的双目测距系统

    LabVIEW开发自动驾驶的双目测距系统 随着车辆驾驶技术的不断发展,自动驾驶技术正日益成为现实。从L2级别的辅助驾驶技术到L3级别的受条件约束的
    发表于 12-19 18:02

    传感器自动驾驶中的应用

    传感器自动驾驶中的应用
    的头像 发表于 11-27 17:06 749次阅读
    <b class='flag-5'>传感器</b>在<b class='flag-5'>自动驾驶</b>中的应用