0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何定义和评价平安集团在医疗科技层面的未来?

医健AI掘金志 来源:IoT科技评论 2020-08-25 10:17 次阅读

如何定义和评价平安集团在医疗科技层面的未来? 编者按:2020 年 8 月 7 日,全球人工智能机器人峰会(CCF-GAIR 2020)正式开幕。CCF-GAIR 2020 峰会由中国计算机学会(CCF)主办,雷锋网、香港中文大学(深圳)联合承办,鹏城实验室、深圳市人工智能与机器人研究院协办。从 2016 年的学产结合,2017 年的产业落地,2018 年的垂直细分,2019 年的人工智能 40 周年,峰会一直致力于打造国内人工智能和机器人领域规模最大、规格最高、跨界最广的学术、工业和投资平台。 在8月9日的医疗科技专场上,来自平安集团的首席医疗科学家谢国彤先生以《用人工智能重塑医疗:平安医疗科技的实践和探索》为题,分享了平安集团在医疗领域的深刻认知和实践。 谢国彤博士认为,所有AI都无非四个要素:数据、算力、算法和应用。在这四个要素下面,平安共研发了2个基础平台和4个医疗AI算法领域,以支持医疗的各种分析和推理,目前有1.6万家医疗机构,43万医生在使用。两个基础平台主要是赛飞AI平台(算力)和医疗五大库及知识图谱(数据)。谢国彤表示,医疗五大库及知识图谱,首先是从数据端出发,分四步去解决数据处理难题:第一,去掉噪音,补全数据,提升数据输入质量;第二,结构化,通过数据和文本抽取,实现数据可用;第三,标准化,把不同来源的医疗数据名称统一;第四,利用算法挖掘疾病的风险因子或者治疗方法。 而赛飞AI平台则主要是通过AI平台化战略,解决AI产品算力和落地的基础性问题。 谢国彤说到,平台的目的就是让医疗数据科学家专注在自己领域内,由平台去完成AI通用算法、智能标注、分布式训练加速、高性能压缩模型部署等通用问题。 在这两大基础平台之上衍生的4个医疗AI算法领域,主要侧重在疾病预测、智能影像、AskBob辅助诊疗和疾病全周期管理四个场景。 在最后的总结中,谢国彤说到,医疗人工智能是利国利民的事情,人命关天,需要AI界和医学界的紧密合作,用AI的算法解决真实的需求,保证模型的安全性、可用性,才能对“健康中国”产生真正的价值。

以下为谢国彤的现场演讲内容,雷锋网《医健AI掘金志》作了不改变原意的编辑及整理:

谢国彤:各位现场和线上的朋友,大家好。我叫谢国彤,负责平安的医疗科技。很高兴今天有机会跟大家分享平安在医疗科技方面的进展。

在过去五年时间,平安积累了大量的医疗业务。平安医疗有三个支柱:患者端、医院端和支付端。顶天立地还各有一横一纵。 患者端,平安目前有全球最大的互联网医疗平台——平安好医生,3亿多注册用户,每天的问诊量在80万次以上; 医院端,平安通过智慧医院的解决方案,在1.6万家医院赋能,还有自己的检测中心、药品集采平台,很多跟医院相关的业务; 保险支付是平安的本行,平安有1亿6千万的保险客户,平安医保科技为两百多个城市政府做医保精算、核赔各种业务。 一横一纵,上面一横是面向政府。平安拥有的智慧城市、智慧卫健业务,在150多个城市帮助政府提供更好的公共卫生、全民信息平台和医共体的解决方案。 下面一纵是我负责的平安医疗科技,从每个业务中沉淀数据,把数据变成AI模型。再反哺赋能给各个业务。今天,我主要聚焦平安医疗科技的工作。 所有的AI无非是四个要素:数据、算力、算法和应用。如果把我们的工作按照四个要素来整理,是2个基础平台和4个算法领域。

基础平台:包括五大库数据及知识图谱平台。这个平台汇聚了平安各种医疗业务沉淀下来的数据,将其知识化后变成知识图谱,支持上层的各种分析和推理。赛飞AI平台:让做医疗的数据科学家专注在自己的领域里,把AI的通用算法、分布式的训练加速、高性能压缩模型部署等通用问题交给平台来做。五大库及知识图谱首先来说一下,我们的五大库知识图谱。

在沉淀大量数据后,我们以疾病为中心构建知识图谱,把疾病的症状、检查检验、用药、关键的常用处方、疾病手术、疾病并发症、疾病风险因素、疾病和基因的关系,包括哪个医院、哪个医生在哪个疾病领域比较擅长,发表过什么科研成果的信息都收集起来,构建出一个包含300万的医学概念、3300万的关系和3000万医学证据的医疗知识图谱,支持后续所有的应用。

构建这样的图谱,我们把它总结为“四化”的过程。拿到数据后,要经过四个关键步骤:第一步,去噪。去掉噪音,补全数据,提高输入数据的质量;第二步,结构化。图谱里有大量文本数据,要做各种实体、关系进行抽取抽取,对文本进行分类、标签,让数据变得可用;第三步,标准化。不同来源的医疗数据,对疾病、药品、检查检验的描述是不一样的。我们要用大量的NLP技术,将各种医学术语统一化、标准化,才能进行下一步的分析;第四步,挖掘。利用各种算法,从数据中挖掘疾病的风险因子或者常用的治疗方法,这些信息最终会沉淀在我们的知识图谱里。

赛飞AI算法平台其次,我介绍一下赛飞AI平台,这个平台的目标要提供从模型训练到模型部署的一整套平台级服务,让医疗数据科学家专注在医疗领域,不用去考虑通用的问题。 赛飞的工作很多。举一个例子,我们在进行组织病理影像分析时,一个病理的影像大概有10亿像素,如果一个医生要很完整的把肾小球和肾小球里的内皮细胞、细膜细胞都标注完,一个小时都不能完成。 但是,所有的片子都有必要去标注吗?不见得。我们利用主动学习的方法,挑选信息量最大的片子。后来我们发现,标注52%的训练数据,就可以达到跟此前标注完所有数据差不多的效果。 再比如分布式加速。现在的NLP模型庞大无比,不管是现在最火的GPT-3拥有的上千亿参数,还是常用的BERT,都是几亿参数的大模型。我们参加ACL比赛时,用了赛飞分布式加速能力,在20天之内训练了281次,不停把模型的精度推到极致,最后拿到冠军。 这就是分布式加速给模型训练带来的价值。 再比如模型压缩的例子,这是非常现实的场景:很多AI模型希望跟硬件进行整合,但是模型很大,硬件存储却很小。我们的一个眼底OCT模型大小是6G,一个OCT设备存储是2G,无法把这个模型放在存储里。 最后,我们把6G的模型压缩到原来的四分之一,精度只损失一点点,最终完成软硬一体的计算。 当然,除了在医疗领域,赛飞还可以拓展变成更加通用的AI平台。

现在平安有16个子公司、42个部门、300多名数据科学家在赛飞平台上完成2.5万次模型训练。 同时,它是参加比赛刷榜的神器,我们拿了7个世界第一,利用这个平台,极大地加快建模速度,也有很多相应论文的发表。 说完底层的技术,我们再看上层的四个算法领域,其中大家比较熟悉的是影像。 平安的业务很广,如果聚焦在医疗AI的算法场景里,则是从疾病的预测、基于影像的辅助诊断、AskBob辅助诊疗和患者院外管理的四大场景,我们有大量的模型算法和工作。 从应用的角度来看,今年,平安所有的医疗科技服务有1.75亿次的调用,服务了1.6万家医院,43.8万名医生用户每天在使用我们的医疗科技服务。

疾病预测关键技术疾病预测,预测的不是人的命运,而是人的生命。比如预测重症患者院内死亡风险、慢性病患者的并发症风险、人群发病风险。 新冠疫情期间,平安医疗科技向国务院办公厅、各个部委提交了130多期预测报告,预测什么时候新增发病人数会到顶,什么时候出院人数会急剧增加,最终死亡率是多少,从而帮助政府做决策。 在疾病的预测过程中,有非常多的关键技术:一、数据修复。拿到100条记录,要求所有的关键数据都有数值,最后剩下一条就不错了。我们在IEEE ICHI参加了Data Imputation的比赛拿了冠军,我们利用数据所谓的横向、纵向和斜向关系,分析数据之前、之后和相关检测检验的信息,猜测缺失的数据可能是多少,均有不错的效果。二、特征工程。很多预测是从病例中进行挖掘,这里也有挑战:数据是多模态的,不像影像相对单纯。 在这次新冠疫情里,预测有60%的ICU患者发生了不同程度的脓毒症,脓毒症是ICU的第一大杀手。ICU里的信号非常复杂,有心率血压、脉搏等生命体征信息,并且时间序列是连续的。 我们利用很好的多模态数据特征工程的方法,提前6个小时预测患者发生脓毒症的风险,精度比目前最好的方法高20%,这个工作今年发表在重症医学顶级期刊CCM上。三、可解释机器学习建模。很多医生是很难接受黑盒模型的,尤其是预测,本来就是在猜,如果怎么猜的都不知道,医生很难接受这个模型。 我们的做法是将深度学习的方法跟医生比较能接受的生存分析survival analysis方法结合起来,利用SHAP等可视化的方法,把因素和结局的关系可视化出来。比如右上角的图,有一个U字形,那是一个非常典型的例子,红色的表示当值在那个区域的时候,导致患者出现肾衰竭的风险,而绿色部分是保护性因素,值在这个区间的患者不容易发生风险,但它不是线性的。 我们利用可解释的模型加上深度学习的方法,用算法定量、精准地把非线性的关系可视化出来,解释给医生,让他们更容易接受。

做预测模型有什么用?现在有两个面向用户的场景在使用: 第一个场景是面向C端用户。平安有最大的全球互联网医疗平台——平安好医生。我们把常见病(高血压、糖尿病、冠心病、脑卒中)的预测模型放在平安好医生APP上。平安好医生有几亿的用户,他们会填写数据预测,看看自己有什么风险,同时进行相应的管理。 第二个场景是针对老年人群体。我们在甘肃收集到185万老年人数据。老年人出现高血压、糖尿病的比例占老年人口的40%,慢性病管理的挑战在于知晓率低,治疗率低。老年人不知道自己有病,或者有病也不会主动治疗。 我们跟甘肃卫健委合作,用算法把这些人挑出来,通过甘肃家庭医生平台,让家庭医生有针对性找到高危老年人,对他们进行主动管理,提高疾病的知晓率和治疗率。 三是在珠海,我们利用200多万居民的健康数据和12个疾病的预测模型,可以生成一个完整的风险评估报告。 同时,我们会把相应患者的教育,以及可访问的健康服务跟风险因素挂在一起:哪些服务可以帮助降低哪些风险因素,让政府在进行疾病管理的时候变得更加精准,更有针对性。基于智能影像的辅助诊断第二个场景是面向医学影像,我们聚焦的是两类人群(基层医生和专家)、三个场景:

对于基层医生,我们聚焦质控和筛查。很多基层医生拍出来的片子位置不正、关键的器官不在里面、以及各种异物,这些片子拿到北京、上海的大医院也用不了。 我们在质控领域有很长的积累,在《NEUROCOMPUTING》、《SCIENTIFIC REPORTS》上发表了一系列的文章,针对DR、CT、内窥镜等影像,发现质量问题后提示医生重拍,进而提高优片的比例,在内窥镜异物比赛上获得冠军。

另外,平安有六个检测中心,300多家医院把数据传到平安影像云上,由平安的医生帮助他们阅片。利用质控的方法,不管是DR。还是CT,质量不好片子的比例下降了20%,让甲级优等片的占比达到98%,提高了基层片子的质量。 第二个场景是筛查,告诉基层医生患者的病情,在基层医院看不了,要去大医院就诊。 我举一个眼科OCT的例子。OCT类似于CT,是三维建模,会看OCT的医生很少,尤其是在基层医院,五官科的医生往往是耳鼻喉科的医生,不一定是眼科医生。 我们在TVST、MICCAI等连续发表了一些文章,用算法对OCT的20多种病灶进行识别,并且做出紧迫性判断。提示医生患者没问题,或是有问题但只需要随访,或者是问题很严重,需要马上到上级医院就诊,这是我们在筛查场景里发挥的作用。 我们在上海、深圳都建立了以权威眼科三甲医院为主、下设几十家社康中心的模式,在社康中心进行筛查。在这两个地方,我们发现,年龄偏高人群中有30%的人有不同程度的眼底病变,其中20%的人需要马上治疗。因此,通过平安的平台,我们可以将他们转到相应的三甲眼科医院进行干预。 第三类是辅助诊断,面向专科医生,对于很难很烦的事情,我们帮助他们加速。 这是肾脏病理的例子。一个医生做肾脏诊断时,需要对着10亿像素的片子数肾小球、有没有硬化,肾小球里面细胞的比例。一个医生数一个肾小球平均需要平均43秒,一个片子里有几十到一百个肾小球。 我们利用最近发表在病理学顶级期刊上的一套模型,跟国家肾病中心的四个肾内科医生进行了对比。结果模型的精度是92%,四个肾内科的医生平均精度是82%,同时,模型看一个肾小球的速度是0.6秒,而医生平均是43秒,我们把速度平均提升了70倍,精度提升了10倍。因此,让医生基于AI模型提供结果进行判断,把琐碎的事情交给计算机,这是我们对AI的定位。今年上半年,有250多个城市使用了平安医疗科技的技术,影像辅助诊断的服务就有上亿次调用。 最后一个例子是宫颈癌TCT病理,我们将硬件与模型进行了整合,通过跟复旦肿瘤医院、第三方诊断中心合作一起应用。扫描仪会在2分钟内完成切片扫描,在40秒钟内对切片进行阳性、阴性的判断,同时会把三类高危的阳性切片按照高、中、低列出来,让医生关注阳性的切片。 即使是阴性的片子,我们会把一些高风险的区域高亮出来,帮助医生做判断。在6000例的数据验证上,敏感度设到99%,排疑率是80%,减少医生阅读阴性片的时间。AskBob辅助诊疗辅助诊疗核心要解决的是诊断治疗时如何给医生一些辅助,我挑选两个关键技术介绍。

目前,我们有2000多种疾病的辅助诊断和120多种精准治疗模型。很多AI应用集中在分类,可能也会完成分割的任务。我们主要用的是深度强化学习的方法,结合短期和长期的结果做Reward function,短期是血压、血糖达标率,长期是并发状的发生率,用不同的结果给深度强化学习一些激励。 利用这样的方法,我们跟国家生命中心在BMJ子刊上发表了面向糖尿病、肾病个性化治疗的模型,跟安贞医院刚刚在AMIA上发表了房颤的治疗模型。 还有一个场景是面向循证医学。医生要阅读大量的文献,我们用算法把文献里关键的疾病、用药抽取出来做分类,比如这类疾病的手术治疗是哪一种,用哪种药进行治疗,我们用算法把关键信息抽取出来。

目前,这一套辅助诊疗系统在1.6万家医院有应用,目标对象同样分为基层医生和专家医生。我们会像助手一样,在基层医生输入症状之后,不断提醒可能的检查、检验和用药、诊断结果。数据显示,部署我们系统之前,地方诊疗规范率不到50%,部署后的规范率达到80%以上。而对于专科医生,我们希望他们在面对复杂病例或者科研需求时,可以通过AI的方式检索到需要的医学证据。比如胃癌,我们会提供不同临床治疗方案的依据以及治疗的效果。 同时,医生可以查询胃癌领域的权威在哪些领域发表了多少文章,有哪些临床实验,从而帮助医生更好地进行科研。患者院外管理除了帮助医生,我们还要关注的对象是患者,患者离开医院后有大量管理的需求。 比如药物是否需要调整、是否还要继续吃,跟其他药一起吃有没有问题。医生会对患者进行随访,但是单纯依靠人的方式是不可能的。中国一年就诊人次是80亿,但只有300万医生,医生治病之余没有精力做后续患者随访。

为此,我们开发了多轮对话技术,让AI尽可能把那些耗时耗力的工作做完,好医生一天会产生80万次的问题。我们分析了好医生日志,每次15分钟的对话里,前5分钟都是医生问患者的病史、诊断治疗,后10分钟患者会问医生五花八门的话题,这些都是我们很好的训练数据。 在ACL里,我们在医疗问答项目上拿到了冠军。基于海量的数据,我们训练了一个AskBob的模型,比通用的模型效果更好,可以做意图理解、FAQ问答和知识图谱问答,回答各种长尾的问题。 举一个应用的例子。目前,在560多家医院、五万名2型糖尿病患者在我们的平台上进行院外的管理。这有点像前面这些方案的集大成者。我们会用各种风险预测产生患者画像,用辅助诊疗的模型生成一些方案、监测方案、用药方案、饮食运动等,用对话的方式进行动态跟踪、随访,包括回答各种问题。 这种方式的效果如何?

数据显示,患者入住三个月后,评估他的HBA1C和空腹血糖,可以看到HBA1C达标率提升5倍,空腹血糖达标率提升20%。患者很积极地阅读文章,积极地上传自己的血糖数据,依从性提升了50%。 与此同时,成本也相应降低。因为以前主要靠人工,三个月内围绕一名患者,护士平均要打5个电话。现在的“AI+护士”,只要打2.9个电话就可以达到更好的效果,这是院外管理一个很好的案例。 更重要的一点是,打通重点疾病的专科模式。我们跟国家肾病中心有一个合作的例子,基于病理对慢性肾病的患者进行辅助诊断,进行肾衰竭的风险预测,对高风险的人群实现精准用药,让他们接受免疫抑制剂的治疗,降低肾衰竭的风险。

以肾病为专科案例来看,我们打通了辅助诊断、风险预测、精准治疗、患者管理的四大环节,在每个环节都有医学期刊论文发表,得到医学界的认可。 最后,我想说的是,医疗人工智能是利国利民的事情,人命关天,需要AI界和医学界的紧密合作,用AI的算法解决真实的需求,保证模型的安全性、可用性,才能真正地对“健康中国”产生价值。采访问答精选提问:您刚刚在演讲中提到了赛飞平台,想请问一下为什么要投入精力去开发平台?未来的面向对象是哪些?谢国彤:我们发现,算法工程师要完成好多通用的事情,而且环境不停地升级,算法要不断优化,例如模型压缩、高性能部署,这些都是一些通用需求。 我们有四个算法领域:疾病预测、医学影像、辅助诊疗还有疾病管理,这四个领域的算法工程师都得学。两年前,我们就开始从训练环节入手,提供一些通用能力,让算法工程师只聚焦在自己的领域。 把数据可视化、数据标注、数据增强,包括分布式加速训练这些通用能力,还有通用算法库,沉淀在赛飞上,不用管底层环境的事情。这样大家都用得很爽,赛飞是一个GPU的集群,有个集群大家就可以共享,有机会用到一个比以前大10倍的GPU的力量。 我们在内部使用后,发现外部客户也有类似需求,因为有很多算法是不局限于医疗领域的,例如NLP领域的BERT,CV领域的ResNet,这些网络很多领域的人都在用。 因此,我们就开始让平安的子公司来使用,现在300多个用户里有一大半都不是做医疗的,都是平安16个子公司的用户,在上面做NLP、CV、OCR等各种各样的建模。所以,赛飞在持续地增长,更好地服务集团,从一个纯医疗的平台变成通用的AI平台。提问:平安的医疗AI产品与布局,与BAT或者AI公司有哪些本质上的区别,怎么才能从这个市场中获得优势?谢国彤:疾病是一个很复杂的领域,有2万到3万种病。就以影像为例,有些聚焦于放射,细分来看,会分为DR、CT和核磁等。从病种上来看,有些会聚焦眼科,有些会聚焦病理,还会再细分还会分为宫颈癌病理、乳腺癌病理、胃癌病理等。 所以,我觉得医疗AI的空间足够大,没有任何一家公司能把世界上所有病的所有AI模型都搞定。 其次,大家选择的切入点不一样,从我的角度来看,我们更关注的是那些真正有需求的场景,如何为基层医生赋能,如何为专科医生减负,不是非要让基层医生看很难的病,或者要比专科医生强很多。在我看来,很多场景就是为了技术而技术。 三年前,我离开IBM的时候,很多公司找过我,但是我选择了平安。我觉得,平安的医疗生态patient、provider、payment是一个很完整的生态,有一些公司也不是没有场景,但是领域很窄。AI是由场景业务驱动,而不是技术驱动,技术驱动是风光一时。只有基于真实的业务场景,才能真的有价值,有收入。提问:对于医疗AI的认证和落地,您有哪些看法?谢国彤:我们现在跟国家科技部和国家卫健委,在进行AI医疗领域的一个课题——AI的模型验证评估平台。我之前跟科技部、卫健委表达了一个观点,他们也很认同,那就是,让大家都拿到证才能用是不现实的。拿一个证,没有两三年是不会有什么结果的,这个过程中大家都在干等?这是不可能的,要鼓励大家去尝试。 尝试的过程中,各个地方的卫健委和医院院长、主任都很困惑,每一家企业来找我都是99%的准确率。但是,测试的数据集都不一样,只要选好测试集百分之百也可以,就看怎么选。 例如眼科OCT,可能有20种病变,其中有些病变是常见,有些是罕见,但测试集里只包含了其中10种,这10种虽然识别准确了,但另外10种还没有识别,怎么就代表模型准确了呢? 因此,我们现在跟科技部、国家卫健委合作的项目,就是由医院、卫健委、药监局等部门牵头,针对特定的疾病和特定的任务,提供中立的测试集。把各家的模型拿上来测试,最后拿出一个评估报告。至少让各家讲自己性能指标的时候,有一个统一的数据集、一个统一、中立的评测标准。 我觉得,国家推动医疗AI应用中做得很好的一个步骤是,先选择一些常见的、需求量比较大的AI场景,制定相对成熟的数据集,从需求比较大病种开始入手,当数据集越来越多,能评估的模型也越来越多。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 医疗
    +关注

    关注

    8

    文章

    1823

    浏览量

    58764
  • 人工智能
    +关注

    关注

    1791

    文章

    47282

    浏览量

    238536
  • AI算法
    +关注

    关注

    0

    文章

    251

    浏览量

    12262

原文标题:平安首席医疗科学家谢国彤:两大基础平台与四大算法领域,详解金融巨头的医疗科技版图 | CCF-GAIR 2020

文章出处:【微信号:IoT_talk,微信公众号:医健AI掘金志】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    DMAIC驱动下的医疗电子技术革新:精准医疗未来已来!

    的核心工具,正悄然引领着医疗电子技术的革新潮流,为精准医疗铺就了一条通往未来的高速路。具体如天行健企业管理咨询公司下文所述: 定义 一切变革始于清晰的
    的头像 发表于 11-21 09:57 184次阅读

    RFID技术智慧医疗中的应用前景分析

    接触、高效、准确、可靠等特性,智慧医疗领域展现出了广阔的应用前景。本文将从RFID技术概述、智慧医疗中的应用实例、市场前景及未来发展方向
    的头像 发表于 09-12 17:49 630次阅读

    医疗AR眼镜,重新定义远程会诊体验

    【AR眼镜:重新定义远程会诊体验】 快速发展的医疗领域,安宝特医疗AR眼镜以其尖端技术和创新功能,引领远程会诊的未来,致力于为为医生和患者
    的头像 发表于 09-10 10:57 313次阅读

    微波射频技术医疗行业的应用

    微波射频技术医疗行业的应用广泛而深入,不仅提高了医疗诊断的准确性和效率,还丰富了治疗手段,为患者带来了更加安全、有效的治疗选择。以下是对微波射频技术
    的头像 发表于 08-13 10:06 770次阅读

    光通信技术医疗健康方面的应用

    光通信技术医疗健康方面的应用是一个日益受到关注且快速发展的领域。随着科技的进步,光通信技术以其高速、大容量、低损耗、抗干扰等优势,医疗
    的头像 发表于 08-09 16:19 954次阅读

    SAI集团收购Get Well,加速AI驱动的医疗保健数字化转型

    医疗保健行业数字化转型的浪潮中,SAI集团近日宣布了一项重大战略举措——成功收购拥有24年深厚底蕴的医疗保健服务提供商Get Well。此次收购不仅标志着SAI
    的头像 发表于 07-16 14:48 554次阅读

    医院智能化涉及了哪些层面和领域

    医院智能化是利用先进的信息技术和智能设备,对医院内部管理、医疗服务、患者体验等方面进行全面优化和升级的过程。医院智能化方面涉及了多个层面和领域,包括但不限于: 1.智能医疗设备:医院
    的头像 发表于 07-15 10:36 421次阅读

    东软医疗获通用技术集团战略投资

    近日,通用技术集团所属资本公司联合中国国有企业混合所有制改革基金有限公司与东软医疗系统股份有限公司(以下简称“东软医疗”)签署投资协议,战略投资东软医疗。作为央企和民企携手发展高端
    发表于 07-03 09:24 351次阅读
    东软<b class='flag-5'>医疗</b>获通用技术<b class='flag-5'>集团</b>战略投资

    蓝牙模块健康医疗领域的创新应用

    随着科技的飞速发展,蓝牙模块健康医疗领域的应用日益广泛,不仅提升了医疗服务的效率和质量,也为患者带来了更为便捷、安全的就医体验。本文将探讨蓝牙模块健康
    的头像 发表于 06-20 17:30 445次阅读

    云知声入选2024未来医疗100强榜单

    近日,凭借智慧医疗领域的持续深耕与创新成果,云知声入选动脉网2024中国未来医疗100强·中国医疗健康产业链服务榜TOP100与VBEF
    发表于 06-14 19:10 409次阅读

    平安电工成功登陆深交所主板

    湖北平安电工科技股份公司(股票代码:001359)近日深圳证券交易所成功上市,股票简称平安电工。此次IPO募集资金高达8.06亿元,资金将主要用于武汉生产基地、通城生产基地的建设以及新材料研发中心的打造。
    的头像 发表于 03-28 16:40 744次阅读

    平安电工深交所主板上市

    湖北平安电工科技股份公司,简称平安电工,近日深交所主板成功上市,中信证券股份有限公司作为其保荐人,见证了这一重要时刻。平安电工深耕云母绝缘材料、玻纤布和新能源绝缘材料的研发、生产和销
    的头像 发表于 03-28 16:35 813次阅读

    气密性检测医疗领域的应用

    气密性检测医疗领域的应用广泛且重要,从医疗器械到医疗包装,都在发挥着关键作用。随着技术的不断进步和需求的日益增长,气密性检测技术将面临更多的挑战和机遇。
    的头像 发表于 03-08 10:47 470次阅读
    气密性检测<b class='flag-5'>在</b><b class='flag-5'>医疗</b>领域的应用

    智能语音助手医疗行业的应用与挑战

    介绍语音数据集医疗智能语音助手中的应用、面临的挑战以及未来的发展趋势。 二、语音数据集医疗智能语音助手中的应用 语音电子病历:医生可以通
    的头像 发表于 01-19 17:37 681次阅读

    智能语音助手医疗行业的应用与挑战

    介绍语音数据集医疗智能语音助手中的应用、面临的挑战以及未来的发展趋势。 二、语音数据集医疗智能语音助手中的应用 语音电子病历:通过智能语
    的头像 发表于 01-18 16:41 534次阅读