0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络能用INT4为啥要用INT8?

YCqV_FPGA_EETre 来源:FPGA开发圈 2020-09-03 10:00 次阅读

1

性能挑战

企业日益重视基于 AI 的系统在数据中心、汽车、工业和医疗等领域中的产品化。

这带来了两大挑战:

AI 推断需要完成的计算量成数量级增加,同时还要保持价格、功耗、时延和尺寸大小不变。 AI 科学家继续日复一日地在算法和模型上开展创新,需要各种不同的硬件架构提供最佳性能。

2

方案概述

对于 AI 推断,在提供与浮点媲美的精度的同时,int8 的性能优于浮点。然而在资源有限的前提下,int8 不能满足性能要求,int4 优化是解决之道。通过 int4 优化,与现有的 int8 解决方案相比,赛灵思在实际硬件上可实现高达 77% 的性能提升。赛灵思4 位激活和 4 位权重 (4A4W) 全流程硬件友好型量化解决方案可实现更优异的精度/资源权衡取舍。

该白皮书介绍了在Zynq UltraScale+ MPSoC 和 Zynq-7000 SoC 系列(16nm和28nm)上面向CNN4位XDPU实现的低精度加速器。这种加速器通过高效地映射卷积计算,充分发挥其DSP功能。这种解决方案可提供优于XDPU两倍的解决方案级性能。在ADAS系统中执行2D检测任务时,这种实现方案能在ZynqUltraScale+MPSoCZCU102板上实现230fps的推断速度,与8位XDPU相比性能提高1.52倍。

此外,在用于ADAS系统中的不同任务时,该解决方案可实现媲美全精度模型的结果。

3

技术导读

对持续创新的强烈需求需要使用灵活应变的领域专用架构 (DSA)。优化 AI 推断性能和降低功耗的主要趋势之一是使用较低精度和混合精度。为降低硬件设计复杂性,模型量化被当作关键技术应用于各类硬件平台。大量工作被投入用于最大限度地降低 CNN 运算量和存储成本。这项研究充分地证明,对于大多数计算机视觉任务,在不严重牺牲精度的情况下,权重和激活可以用 int8 表达。

然而对于某些边缘应用而言,硬件资源仍然不足。在对边缘应用使用较低的位宽(如 1 位、2 位)时,一些常见的硬件设计解决方案使用简化的乘法器。尽管这些解决方案时延低、吞吐量大,但它们与全精度模型相比,仍然存在较大的精度差距。因此,在模型精度和硬件性能之间寻求平衡变得至关重要。

赛灵思运用几种常见的网络结构(ResNet50V1、ResNet50V2 、MobilenetV1和MobilenetV2),在 ImageNet 分类任务上通过使用几种不同的量化算法进行了实验。结果显示精度随着位宽减少而下降。尤其是在位宽低于 4 时精度下降显著。此外,赛灵思也使用 Williams 等介绍的 Roofline 模型,分析不同位宽下的硬件性能。

在ZCU102上以不同位宽运行Roofline模型

如图 1 所示,以赛灵思 ZCU102 评估板为例,随着 MAC 的精度降低,硬件成本降低,性能得到提高。此外,实验结果还显示,低比特量化可通过降低存储器需求提高性能。这在 ResNet-50 神经网络的卷积运算强度上得到证实。该网络分别用 8 位精度和 4 位精度进行了运算。因此,int4 在模型精度和硬件性能之间实现了最佳权衡。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4773

    浏览量

    100889
  • AI
    AI
    +关注

    关注

    87

    文章

    31097

    浏览量

    269428
  • adas
    +关注

    关注

    309

    文章

    2186

    浏览量

    208704

原文标题:卷积神经网络能用 INT4 为啥要用 INT8 ?- 最新白皮书下载

文章出处:【微信号:FPGA-EETrend,微信公众号:FPGA开发圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    卷积神经网络与传统神经网络的比较

    在深度学习领域,神经网络模型被广泛应用于各种任务,如图像识别、自然语言处理和游戏智能等。其中,卷积神经网络(CNNs)和传统神经网络是两种常见的模型。 1. 结构差异 1.1 传统
    的头像 发表于 11-15 14:53 560次阅读

    卷积神经网络的基本概念、原理及特点

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习算法,它在图像识别、视频分析、自然语言处理等领域有着广泛的应用。本文将详细介绍卷积神经网络
    的头像 发表于 07-11 14:38 1127次阅读

    BP神经网络卷积神经网络的关系

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种在人工智能和机器学习领域
    的头像 发表于 07-10 15:24 1614次阅读

    循环神经网络卷积神经网络的区别

    循环神经网络(Recurrent Neural Network,RNN)和卷积神经网络(Convolutional Neural Network,CNN)是深度学习领域中两种非常重要的神经网络
    的头像 发表于 07-04 14:24 1349次阅读

    卷积神经网络与循环神经网络的区别

    在深度学习领域,卷积神经网络(Convolutional Neural Networks, CNN)和循环神经网络(Recurrent Neural Networks, RNN)是两种极其重要
    的头像 发表于 07-03 16:12 3476次阅读

    卷积神经网络实现示例

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,主要用于处理具有网格结构的数据,如图像。CNN通过卷积层自动提取图像特征,然后通
    的头像 发表于 07-03 10:51 458次阅读

    卷积神经网络的实现原理

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 10:49 564次阅读

    bp神经网络卷积神经网络区别是什么

    BP神经网络(Backpropagation Neural Network)和卷积神经网络(Convolutional Neural Network,简称CNN)是两种不同类型的人工神经网络
    的头像 发表于 07-03 10:12 1247次阅读

    卷积神经网络分类方法有哪些

    卷积神经网络(Convolutional Neural Networks,CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等计算机视觉任务。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 09:40 490次阅读

    cnn卷积神经网络分类有哪些

    卷积神经网络(CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等领域。本文将详细介绍CNN在分类任务中的应用,包括基本结构、关键技术、常见网络架构以及实际应用案例。 引言 1.1
    的头像 发表于 07-03 09:28 645次阅读

    卷积神经网络训练的是什么

    卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络
    的头像 发表于 07-03 09:15 437次阅读

    卷积神经网络的原理与实现

    1.卷积神经网络(Convolutional Neural Networks,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。 卷积神经网络是一种前馈
    的头像 发表于 07-02 16:47 612次阅读

    卷积神经网络的基本结构及其功能

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、视频分析、自然语言处理等领域。本文将详细介绍卷积神经网络的基
    的头像 发表于 07-02 14:45 2350次阅读

    卷积神经网络的原理是什么

    卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,广泛应用于图像识别、语音识别、自然语言处理等领域。本文将详细介绍卷积神经网络的原
    的头像 发表于 07-02 14:44 676次阅读

    卷积神经网络和bp神经网络的区别

    卷积神经网络(Convolutional Neural Networks,简称CNN)和BP神经网络(Backpropagation Neural Networks,简称BPNN)是两种
    的头像 发表于 07-02 14:24 4342次阅读