0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

全面的SystemC TLM驱动式IP设计与验证解决方案

电子设计 来源:电子设计应用 作者:Steven Brown 2020-09-05 12:23 次阅读

引言

下一个抽象级别建立在事务级建模(TLM)基础之上。创建TLM IP作为黄金源码后,设计团队可简化IP创建和复用,在功能验证上节省人力物力,并减少bug。设计迭代减少,原因是TLM验证比RTL验证快得多,且架构选择在RTL验证进行之前就能得到确定。此外,事务级模型可用于软硬件协同验证,并可组成用于早期软件开发的虚拟平台的一部分。所有这些优势将大幅提升设计效率。

TLM通过函数调用而非信号或线路进行模块间通信。它允许用户分析读或写这些事务,而不用担心底层逻辑的实现和时序。SystemC是开发可复用、可互用 TLM IP的最佳语言标准。此外,因为SystemC建立在C++基础上,它还允许对C语言算术函数的完全复用。开放SystemC行动(OSCI)为TLM模型定义了若干抽象层,分别是程序员视角(无定时)模型、宽松定时模型和近似定时模型。

Cadence设计系统公司目前提供一种全面的SystemC TLM驱动式IP设计与验证解决方案,包括方法学指南、高阶综合、有TLM感知的验证以及客户服务,推动用户向TLM驱动设计与验证流程转变。

要求对RTL进行改变的关键难题

在RTL中,有限状态机的结构要进行充分描述。这意味着,在编写RTL时需关注微架构详情,如存储器结构、流水线、控制状态或最终实现中使用的ALU等。 这一要求导致更长、可复用性更低的设计与验证流程。

有时当TLM用于当前流程时,现有的基于RTL的流程需要进行两次设计意图手工输入——一次在系统级、一次在RTL级。这种过程粗笨低效且易出错。架构直至产生RTL后才能确定,而重新确定IP目标成本很高。一个真正的TLM驱动式设计与验证流程将只需要一次设计意图简单的表达,并提供一条自动化的转换方法。

从RTL开始查找和解决架构问题过程长,代价高

RTL驱动式设计方法学的一大问题是,一种架构是否能实现,直到建立了RTL并对其进行验证后才能确认。由于RTL是架构的直接表示,大部分RTL设计师不得不同时探究功能正确性、架构和设计目标。这导致很长的周期,始于做出架构决定,终止于验证功能性。通常,设计与验证团队会发现需要修改架构的功能性 bug,每次发现这样的bug就需要重新开始整个周期。

在RTL上复用IP设计限制了架构灵活性

当今SoC中,可能有高达90%的IP模块来自以前项目的复用。但是,当IP的黄金源码为微架构级别时,复用是很困难的。重定RTL IP的微架构目标费力且容易出错。目标系统应用可能差别很大,意味着不通过重新架构,仅通过简单复用,新的SoC设计目标是不能达到的。例如,RTL设计师可能需要将设计重新分割成RTL块、改变流水线级数、或创建新的存储器架构,因为在原有IP中,这些微架构详情都是固定和预先决定的。

RTL功能验证时间比当前技术的最高吞吐量增加得更快

在很多SoC项目中,功能验证已成为主要瓶颈。RTL功能验证开始时,在系统级的大量验证投入已然损失。虽然验证规划、指标驱动式验证等方法使设计团队尚能应付当前的大部分验证难题,但时间限制和日益增多的门数正在使验证变得难以为继。RTL功能验证所需时间可能随设计的增大而呈指数式增长,因为相互作用的各种模式及该IP需要测试的许多软硬件配置导致了各种极端情形,它们也需要进行验证。

RTL是有精确时钟周期的,涉及的代码行远多于TLM逻辑。对RTL模型进行仿真时,仿真器检查所有事件或时钟周期,即使在协议级上并未发生任何重大情况。仿真器要在微架构详情上浪费大量机器周期,而这些需要在架构确定后才能确认。TLM仿真在更高抽象级别进行,能更早完成,并提供更高性能。

TLM正是需要的解决方案

TLM驱动的设计和验证流程可实现在功能级别上描述IP,然后在快速仿真中验证事务的功能行为。TLM流程的主要优点包括能更快创建设计;减少了黄金源码中的代码行;bug更少;表达设计意图更容易,且仅需一次;更快的仿真和调试;功耗预估可更早进行;支持软硬件协同验证;可将模型纳入虚拟平台;RTL生成前可进行架构验证;在RTL验证中可复用TLM验证IP;无需微架构重新设计即可进行IP复用;ECO模式下产生的RTL变化很小。

基于TLM的流程与高层次综合(HLS)配合,可将抽象级别提高。这是大约15年前设计师转向RTL后的又一次重大转变,根据之前的经验,这次转变有可能使设计效率呈现数量级的提升(见图1)。

全面的SystemC TLM驱动式IP设计与验证解决方案

下面几部分描述了TLM驱动式设计和验证流程的具体属性和优势。

创建TLM作为黄金源码——更快的IP创建与设计IP复用

与RTL不同的是,TLM不描述最终实现的微架构详情。不描述微架构详情大幅提高了TLM设计在要求各不相同的多个项目间的可复用性,因为相同的TLM IP可重新定为不同微架构的RTL代码。而且,得益于更高的抽象程度,正确地创建功能要容易得多。TLM模型具有的代码行比对应的RTL模型要少得多,从而在最终设计中实现了编码效率和品质的同步提高。

开发与维护作为IP模块黄金源码的TLM所需的综合和验证解决方案,需要产生有品质保证的结果并验证其正确性,且无须编辑RTL或门级设计。这使设计团队在TLM环境内就能做出所有决定,并可通过将TLM源码复用于系统来约束完全不同的其他设计。

SystemC是描述事务级设计的最佳标准,并连接到实现,提供了最好的可复用机会。它可对硬件的并发特性进行建模,并针对进程、管脚、线程和控制逻辑描述定时或非定时的行为。TLM 1.0和2.0标准提供了创建可互用IP模型的能力。最终,需要有一个合格的可综合TLM IP库,及可综合TLM标准(或事实上的)子集。

对TLM IP的功能验证可应对验证吞吐量的爆发

TLM IP验证相对RTL验证具有很多优势。首先,仿真运行更快——相对RTL仿真有数量级的提升,从而允许验证更多功能性实例。同时,在TLM抽象级别上进行的调试比RTL调试更容易、更快速。

通过在更高抽象级别上编码,TLM IP需要的代码行更少,bug也更少。功能性bug在设计早期就能被发现和解决。因而可大幅减少验证工作的总体投入。

在TLM抽象级别上,定位和理解bug更容易,修正bug也更容易,原因是需要处理的详情更少。TLM流程允许在最合适的抽象级别来验证各关注重点,如TLM用来验证功能、信号级验证用于验证接口等。

TLM验证流程始自算法功能验证,允许用软件进行功能验证,然后转向TLM功能验证(见图2)。通过C-to-Silicon Compiler的编译,用户可转向微架构RTL验证和RTL到门级等效性检查。除支持仿真很快的非定时建模外,TLM还允许用户进行改进,逐渐包含微架构详情,并改进时序精确性。

软硬件协同验证及早期软件开发

TLM模型抽象级别高、执行快,足够执行切实可行的软硬件协同仿真。设计师能将嵌入式软件与TLM硬件模型进行协同仿真,来检查软硬件依赖性,并对依赖于硬件的软件进行早期调试。有可能将这些技术当做对软硬件交互的随机化激励与覆盖进行应用。

用于早期软件开发和调试的虚拟平台可能包含由SystemC TLM模型组成的子系统。得益于它们的快速执行,为创建硬件设计而开发的模型也可用来加速软件设计。

支持TLM和RTL混合验证

在SoC级别需要TLM和RTL混合功能验证,是因为有大量将被复用的遗留RTL IP,且仍有必要针对设计各部分进行详细RTL功能验证。某些验证任务将只能在RTL上才能完成,包括针对存储器存取顺序或状态迁移覆盖等属性的微架构结构验证。

由于大部分验证工具如验证计划(vPlan)、开放验证方法学(OVM)验证组件、testbench、序列、测试、检查和覆盖等在各种抽象级别都能复用,因此TLM/RTL混合信号验证也变得更容易实现。功能验证规划与管理跨TLM与RTL两个级别,允许团队在混合级别设计中的各级别上对验证进行跟踪和控制,并在需要时对结果进行整合,确保了整体品质。

用于SystemVerilog的OVM已得到扩充,可支持包括e与SystemC在内的多种语言。OVM库也支持TLM。目前,OVM方法学描述正在进行扩充,以显示怎样在一个综合性回归解决方案中整合TLM和RTL模型。这将有助于创建工作于多语言、TLM/RTL混合验证环境的验证IP(VIP)。

多级功能验证testbench基于事务,当它连接到基于RTL的IP、总线或接口时,需要一个事务处理器在事务级域和管脚精确的RTL域之间进行转换。类似地,需要事务处理器将TLM IP块连接到RTL IP块上的总线或接口。基于TLM的方法学必须考虑,这些事务处理器该怎样工作,以获得混合TLM/RTL验证的最大收益。有些事务处理器可通过购买取得,而有些则是专有的,由项目团队创建,并作为验证库组件进行管理。

很多项目实现TLM仅仅是为了新IP,从而逐渐建立起一个TLM IP库,许多团队针对新的IP采用了TLM的方法学,并且逐渐丰富TLM IP库,而有些团队在事关成败的关键项目中采用了TLM方法学,用于所有重要的IP模块。最终,SoC的所有IP黄金源码都来自于TLM级。在这些情况下,品质、效率及容易调试的优点将比TLM/RTL混合项目中更加明显。SoC TLM功能验证,包括SoC级架构分析和优化,将可能实现。

从TLM到RTL验证进行VIP复用

VIP复用现已成为主流,因为创建高质量验证环境的时间经常超过创建设计IP本身的时间。标准协议的广泛使用推动了商业VIP市场的快速发展。当前,大部分VIP是寄存器传输级的。由TLM得到的VIP也将有一定需求,但必须可复用于TLM/RTL混合功能验证。

在RTL功能验证中,使用约束随机激励生成的先进testbench占据了主导地位。由TLM得到的VIP在用于TLM、TLM/RTL混合及RTL功能验证的testbench中应该都是可操作的。这样的VIP需允许指标驱动式验证的应用,因为客户会在验证抽象的所有级别上使用覆盖指标。最后,对于和架构及软件工程团队工作密切相关的验证团队,辅助的嵌入式软件和定向测试也是必需的。

从算法到微架构的渐进式设计改进

TLM IP设计和验证流程有若干独特的步骤:算法验证、架构验证、微架构验证(见图3)。第一步(算法验证)可能涉及C++或MatlabSimulink这样的产品。用户可为关键算法特性制定一个vPlan,验证I/O的功能,并为关键实例应用激励序列。

第二步(架构验证),设计师使用TLM驱动式IP建模(TDIP)方法学来定义架构和接口协议。他们复用算法vPlan,并应用额外的激励、检查、断言与覆盖,还为关键架构和接口协议特性制定vPlan。在第三步(微架构验证),设计师通过C-to-Silicon Compiler进行综合,复用算法和架构vPlan,然后推广至激励、检查、断言与覆盖中的微架构详情。

Cadence TLM产品

Cadence TLM驱动式IP设计与验证解决方案包含方法学指南、C-to-Silicon Compiler、Cadence Incisive功能验证平台以及TLM驱动式IP设计与验证服务。

统一的TLM驱动式IP设计、验证、复用方法学及编码指南

Cadence将为TLM驱动式IP设计与验证提供方法学指南,帮助设计团队在最短时间内以最高效率启动和完成他们初始的TLM项目,并避免采用新方法学的常见错误。从TLM IP设计编码风格、建模指南及综合子集开始,用户能够创建TLM IP,其架构利用了高层次综合所提供的能力。在整个TLM驱动的IP方法学中都考虑了对设计和验证IP的复用。

C-to-Silicon Compiler利用TLM黄金源码创建高质量的RTL

C-to-Silicon Compiler是一个高层次综合产品,它采用TLM SystemC IP描述和约束,并创建可用于标准RTL实现流程的RTL。为确保结果的质量,它利用Cadence Incisive RTL Compiler技术来创建逻辑,并提取该逻辑的时序与功耗信息来决定最终RTL的架构详情。

C-to-Silicon Compiler GUI显示了原始SystemC和根据它生成的RTL代码行之间的对应关系。这种独特的对照功能鼓励系统设计师和RTL设计师之间的沟通,并有助于保持 SystemC TLM作为黄金源码。它还将调试提升到更高的抽象水平,并使设计师可以评估SystemC源码的变化对RTL产生的影响。

C-to-Silicon Compiler提供了增量综合能力,可大幅简化工程更改(ECO)过程并尽可能减少对RTL代码的更改。其他大多数HLS工具都要求对整个算法进行重新综合,意味着源代码中的微小变化也会导致完全不同的RTL。在这些情形下,必须重做逻辑综合和RTL验证。因而很难将SystemC代码保持为黄金源码。相比之下,C-to-Silicon Compiler仅对算法的改变部分生成RTL代码,而不修改设计的其他部分。

C-to-Silicon Compiler能通过应用新约束,生成新RTL,将TLM设计IP转移到新的微架构目标。通过指定不同时序、面积和功耗约束或不同微架构指导如流水线级数,就能生成新的RTL。这样,设计团队就能重复利用IP,且人力投入更少,RTL质量更高,时间更少。通过尝试不同微架构,设计师还可运行假设实验。

最后,C-to-Silicon Compiler能自动生成周期准确的SystemC快速硬件模型(Fast Hardware Models, FHM),能以非定时TLM模型的80%~90%的速度执行。这些SystemC模型允许早期快速验证和软硬件协同开发。FHM配有来自Cadence Incisive环境的扩展,使变量和信号的显示更加明显,以方便分析和调试。

Incisive指标驱动式从TLM到收敛验证解决方案

Cadence Incisive功能验证平台是完全集成化的多语言、多级别功能验证解决方案。利用指标驱动式验证、专注于硬件的定向测试、软件定向测试或软硬件协同验证,Cadence Incisive Enterprise Simulator可完整验证符合OSCI TLM 2.0的设计IP。

特别设计的事务级分析和统一的调试特性有助于TLM IP的创建和验证,无论设计是完整的TLM IP或仅仅是遗留RTL SoC中的一个TLM IP模块。Incisive Enterprise Simulator在其调试环境中自动识别TLM 2.0构件,可提供保存/重启及重置功能,并针对SystemC/C++进行了扩展。该仿真器可推断事务信息,并提供有可感知TLM控制、可见性和调试特性。通过事务级的控制和调试操作,用户能够调试SystemC TLM 2.0设计中的所有互动元素。

通过Cadence Incisive Software Extensions,设计师能够运行嵌入式软件的处理器模型和TLM硬件模型的协同仿真。Incisive Software Extensions使验证testbench可使用在处理器模型下运行的软件、并为软硬件协同仿真提供了指标驱动式验证、伪随机测试生成、验证覆盖等功能。

Cadence Incisive Enterprise Manager提供了TLM、TLM/RTL与RTL功能验证技术,以成功获得收敛。对于具有大规模RTL遗留IP的SoC,使用Cadence Incisive Palladium或Cadence Incisive Xtreme,可用快速RTL检验对TLM仿真进行补充。这些硬件平台所允许的周期精确验证的运行速度,也能允许低阶软件验证的运行。

帮助规划和实施项目关键更改的服务

一次一个IP模块地过渡到TLM驱动式设计与验证,能降低一些风险和成本。但是,有些项目必须进一步减少风险,并借助丰富经验的帮助,来规划、执行并扩大最优方法验证。Cadence在全球都可提供TLM驱动式设计和验证的专家服务,以扩大成功机率,减少运行时间、人力投入和风险。

结语

TLM驱动式设计与验证将最终使TLM取代RTL作为大多数设计组件的黄金源码。其优势是明显的——快得多的设计与验证时间、IP复用更容易、bug更少。工作效率将实现RTL设计出现以来的最大跨越。但这一过渡不可能一蹴而就。TLM驱动式设计和验证方法在新IP被创建出来时,一次运行一个IP模块。而有些设计组件直接以RTL形式设计将是最好的方式。因此,必然要有将新TLM IP与遗留的RTL IP在设计与验证环境中进行合并的可能。

通过提供方法学指南、高层次综合、有TLM感知的验证和调试及采用服务,Cadence将提供帮助,使RTL到TLM驱动式设计和验证方法学的过渡更容易。

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 接口
    +关注

    关注

    33

    文章

    8441

    浏览量

    150704
  • IP
    IP
    +关注

    关注

    5

    文章

    1604

    浏览量

    149231
  • 总线
    +关注

    关注

    10

    文章

    2857

    浏览量

    87893
收藏 人收藏

    评论

    相关推荐

    如何在ModelSim下用SystemC的做验证

    如何在ModelSim下编译和仿真SystemC的设计?如何在ModelSim下用SystemC的做验证SystemC作为一种系统级设计与验证
    发表于 03-01 11:30

    如何基于uvm方法学采用systemc进行IC验证?

    请教各位大佬,UVM是基于sv的验证方法学,如果采用systemc语言编程,如何实现?
    发表于 11-07 15:30

    有什么方法可以进行IP开发及FPGA建模?

    基于SystemC/TLM方法学的IP开发及FPGA建模
    发表于 04-29 06:54

    AMBA-PV TLM扩展用户指南

    TLM 2.0的AMBA-PV扩展(AMBA-PV)将AMBA®总线映射到TLM 2.0之上。 其主要特点是: •本课程专注于程序员视图(PV),专注于高级、功能准确的事务建模。低电平信号,例如信道
    发表于 08-10 06:56

    SystemC进行SoC的系统级设计与仿真

    IC 技术已发展到SoC 阶段,系统级设计、仿真和验证已成为IC 设计面临的巨大挑战。SystemC 是新兴的系统级设计语言,为复杂系统的设计与验证提供了解决方案。本文介绍
    发表于 05-18 13:44 28次下载

    基于SystemC的系统验证研究和应用

    视频编解码芯片中运动估计与补偿单元(MECU)的算法复杂,使用传统硬件描述语言建立模型和模型验证的过程繁琐耗时,为了缩短芯片验证时间,本文针对MECU模块提出了基于SystemC语言
    发表于 02-24 12:07 16次下载

    Cadence推出首个TLM驱动设计与验证解决方案

    Cadence推出首个TLM驱动设计与验证解决方案 Cadence设计系统公司今天推出首个TLM
    发表于 08-07 07:32 760次阅读

    Cadence推出首个TLM驱动设计与验证解决方案提升基于

    Cadence推出首个TLM驱动设计与验证解决方案提升基于RTL流程的开发效率 Cadence设计系统公司推出首个
    发表于 08-11 09:12 573次阅读

    利用基于SystemC/TLM的方法学进行IP开发和FPGA

    利用基于SystemC/TLM的方法学进行IP开发和FPGA建模 随着系统级芯片技术的出现,设计规模正变得越来越大,因而变得非常复杂,同时上市时间也变得更加苛刻。通常RTL已
    发表于 01-04 13:11 5368次阅读
    利用基于<b class='flag-5'>SystemC</b>/<b class='flag-5'>TLM</b>的方法学进行<b class='flag-5'>IP</b>开发和FPGA

    TLM驱动方案探讨

    引言 Cadence设计系统公司目前提供一种全面的SystemC TLM 驱动IP设计与
    发表于 08-25 09:56 1299次阅读
    <b class='flag-5'>TLM</b><b class='flag-5'>驱动</b><b class='flag-5'>式</b>新<b class='flag-5'>方案</b>探讨

    Cadence推出15种新验证 IP(VIP)解决方案

    楷登电子(美国 Cadence 公司,NASDAQ:CDNS)今日宣布推出 15 种新的验证 IP(VIP)解决方案,助力工程师迅速有效地验证设计,以满足最新标准协议的要求。
    的头像 发表于 06-06 11:18 3438次阅读

    新思科技设计、验证IP解决方案助力Arm全面计算战略

      新思科技设计、验证IP解决方案助力全新Arm Cortex CPU和新一代Arm GPU实现业内领先的性能和能效比。
    的头像 发表于 07-13 11:06 1261次阅读

    思尔芯系统级验证原型解决方案助力BLE Audio领域的IP/蓝牙SoC快速设计

    思尔芯(S2C)近日宣布,公司的系统级验证原型验证解决方案获得了较为全面的正向市场反馈,成功协助多家设计企业完成低功耗蓝牙音频(BLE Audio)领域的
    的头像 发表于 05-30 15:52 645次阅读

    SystemC TLM中的接口

    SystemC TLM中的接口 在SystemC TLM中,接口是一个C++的抽象类。抽象类中的所有方法都是用“=0”标识表示的纯虚函数。C++不允许创建抽象类的对象,因为抽象类对象是
    的头像 发表于 11-02 15:54 740次阅读

    新思科技PCIe 7.0验证IP(VIP)的特性

    在近期的博文《新思科技率先推出PCIe 7.0 IP解决方案,加速HPC和AI等万亿参数领域的芯片设计》中,新思科技宣布推出综合全面的PCIe Express Gen 7(PCIe 7.0)
    的头像 发表于 07-24 10:11 498次阅读
    新思科技PCIe 7.0<b class='flag-5'>验证</b><b class='flag-5'>IP</b>(VIP)的特性