0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

太赫兹光子学组件研究获重大突破 实现6G电信连接

MEMS 来源:MEMS 作者:MEMS 2020-09-08 10:02 次阅读

太赫兹光子学组件研究获重大突破,有助造出廉价紧凑型量子级联激光器 实现6G电信连接。

量子级联激光器(QCL)是一种在中长红外和太赫兹范围工作的半导体激光器。在QCL中,电子负责发射光子进入随后的量子阱中,由此一个电子可以产生几个光子,效率非常高。从一个量子阱到另一个量子阱的过渡称为“量子级联”。

来自德国、意大利和英国的研究团队成功开发出一种关键的光子组件,实现了半导体量子阱的子带间跃迁与金属腔的光子模式超强耦合,有望用可饱和吸收体(SA)来制造廉价的、可引发短太赫兹脉冲的量子级联激光器(QCL)。这将成为太赫兹应用道路上的一个重要里程碑。相关成果发表在最近的《自然·通讯》上。

太赫兹波是指频率介于微波与红外之间的电磁波,由于其性质特殊,具有广泛的应用潜力。如机场安全扫描仪、痕量气体检测、超高速通信技术和医疗技术等。但目前商用的太赫兹源还只能以连续波模式运行。因此研发廉价的、能产生很少甚至单周期脉冲的紧凑型量子级联激光器,替代结构复杂且昂贵的台式激光源,将加速带来太赫兹领域各种激动人心的应用。

量子级联激光器的发射过程基于半导体多量子阱(MQW)结构中的子带间(ISB)跃迁。采用饱和吸收器的被动锁模是激光器产生超短脉冲的一种方法。该模式需要响应时间短且饱和阈值低的可饱和吸收体,但用于太赫兹光谱范围的可饱和吸收体一直难以实现,而且所需的光强度远远超过量子级联激光器的能力。

现在,研究团队成功开发出一种由金镜和金栅格组成的微结构装置,它们共同构成了太赫兹辐射的共振体。它的共振可以与特殊半导体纳米结构中的电子紧密耦合。通过高精度慢动作相机观察发现,新结构很好地响应强太赫兹脉冲的刺激,在飞秒的时间尺度上吸收器就达到饱和。强烈的光脉冲可以将可饱和吸收体(金栅格)转换成几乎完美的镜面。所需光强度比单独的纯半导体结构低十倍,且反应比太赫兹脉冲的单个光振荡更快。

意大利国家纳米科技中心的米瑞安·维迪耶罗教授说:“我们现在掌握了使用饱和吸收体制造超快量子级联激光器的所有必要组件。”太赫兹在很多领域的重要应用将有望变为现实,包括电信、化学分析和医学诊断等。由于太赫兹辐射的振荡速率比现代计算机的时钟速率快上千倍,超短太赫兹脉冲可以实现新一代的电信连接,被认为是最有潜力的6G技术之一。

原文标题:太赫兹光子学组件研究获重大突破

文章出处:【微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 激光器
    +关注

    关注

    17

    文章

    2517

    浏览量

    60356

原文标题:太赫兹光子学组件研究获重大突破

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    6G,为什么会选择THZ频段?

    6G目前处于非常早期的研究阶段。国际电信联盟所期待的“网络2030”愿景正在逐步实现。虽然该行业距离进入6G标准开发进程还有几年的时间,但亚
    的头像 发表于 12-25 15:19 75次阅读
    <b class='flag-5'>6G</b>,为什么会选择THZ频段?

    国外科研团队在X射线科学领域取得了重大突破

    近日,据《自然·光子》报道,欧洲X射线自由电子激光装置(XFEL)和德国电子同步加速器研究中心团队在X射线科学领域取得了重大突破。他们成功生成了前所未有的高功率、阿秒级硬X射线脉冲,
    的头像 发表于 12-20 09:11 121次阅读

    什么是光子

    包括发射、传输、偏转和放大等过程。 光子的应用非常广泛,从能源生产和检测到电信和信息处理,无所不包。它对通信、医疗保健、导航和天文学等各个领域产生了重大影响,成为现代技术和科学认识的
    的头像 发表于 10-29 06:21 174次阅读

    罗德与施瓦茨展示创新6G超稳定可调赫兹系统

    罗德与施瓦茨(以下简称“R&S”)在巴黎举办的欧洲微波周(EuMW 2024)上展示了基于光子赫兹通信链路的6G无线数据传输系统的概念验证,助力新一代无线技术的前沿探索。 在
    的头像 发表于 10-11 10:56 381次阅读

    中国科研团队首次实现公里级赫兹无线通信传输

    10月8日,由中国科学院紫金山天文台领衔的联合实验团队宣布,在青海省海西州雪山牧场取得重大突破,成功实现了基于超导接收技术的高清视频信号在公里级距离上的赫兹/亚毫米波无线通信传输。此
    的头像 发表于 10-08 16:49 648次阅读

    关于赫兹波的介绍

    在上面的图表中,光波和无线电波是相同的电磁波,被应用于社会的各个领域。 另一方面,赫兹波还没有被应用。然而,赫兹波具有以下有吸引力的特性和各领域的预期是很有用的。
    的头像 发表于 09-29 06:18 234次阅读
    关于<b class='flag-5'>太</b><b class='flag-5'>赫兹</b>波的介绍

    国际电信联盟标准局正式启动首个6G安全技术研究项目

    在瑞士日内瓦举行的国际电信联盟ITU-TSG17(ITU-T第17研究组)全体会议上,中国移动引领的ITU-T首个聚焦于6G安全技术的研究项目——《IMT-2030(
    的头像 发表于 09-19 15:02 763次阅读

    NVIDIA携手联发科,G-Sync技术重大突破

    8月21日,NVIDIA携手联发科在德国科隆游戏展上震撼宣布了一项战略合作新举措,标志着NVIDIA全套G-Sync技术的重大突破——该技术将被直接集成至联发科先进的显示器控制芯片中,旨在为广大游戏爱好者带来前所未有的清晰与流畅游戏体验。
    的头像 发表于 08-21 14:25 339次阅读

    中国6G,国际首个!

    了4G、5G链路具备6G传输能力的可行性,实现6G主要场景下通信性能的全面提升,是我国通信领域的突破
    的头像 发表于 07-15 15:51 598次阅读
    中国<b class='flag-5'>6G</b>,国际首个!

    据新华社等多家媒体报道!畅能达科技实现散热技术重大突破

    金刚石复合材料,价格十分昂贵。 针对目前全球芯片等产业未来散热需求,广东畅能达 经过数年潜心研究,一举实现重大突破。 经相关权威部门测试,在同等测试条件下,该公司研发的相变封装基板能够有效
    发表于 05-29 14:39

    日本造出全球首个高速6G无线设备

    日本造出全球首个高速6G无线设备 6G即第六代移动通信标准,业界预计2030年左右可以实现6G商用。理论上6G网络将是一个地面无线与卫星通信
    的头像 发表于 05-07 15:37 1137次阅读

    芯问科技赫兹芯片集成封装技术通过验收

    分析、设计、测试和工艺技术等研究,获得了一批高性能低成本集成元件,并将其应用在赫兹通信收发前端系统,进行了应用实例验证。通过本项目的研究,为
    的头像 发表于 04-02 15:23 740次阅读

    是德科技携手英伟达6G研究云平台,加速推进6G技术研究

    是德科技(Keysight Technologies,Inc.)现已开启与全新 NVIDIA 6G 研究云平台的合作。
    的头像 发表于 03-26 15:37 418次阅读

    我国在光存储领域重大突破 或将开启绿色海量光子存储新纪元

    我国在光存储领域重大突破 或将开启绿色海量光子存储新纪元 据新华社的报道,中国科学院上海光学精密机械研究所与上海理工大学等合作,在超大容量超分辨三维光存储
    的头像 发表于 02-22 18:28 1779次阅读

    赫兹真空器件的重要组成部件

    赫兹波处于电磁波谱中电子光子之间的空隙区域,具有不同于低频微波和高频光学的独特属性,在无线通信、生物医学、公共安全等军事和民用领域具
    的头像 发表于 01-04 10:03 1703次阅读
    <b class='flag-5'>太</b><b class='flag-5'>赫兹</b>真空器件的重要组成部件