0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能和机器学习的选购指南及基础知识

如意 来源:360机房 作者:Harris 2020-09-08 11:35 次阅读

B2B软件销售和营销团队很喜欢采用“人工智能”(AI)这一术语。人工智能具有一种神奇的效果,听起来令人印象深刻。但是,当这些销售人员说“人工智能正在这样做”时,他们的买家通常对人工智能知之甚少,因此不会提出棘手的问题。

在诸如DevTools空间之类的行业中,至关重要的是,买家必须了解产品的用途和局限性,以确保这些产品满足其需求。如果人工智能的目的是为人类做出正确的决定,那么接受“人工智能正在这样做”就是承认真的不知道产品的工作方式或它是否在为其做出正确的决定。

当人们成为买方时,通常不对了解人工智能和机器学习产品负责,因为这些技术令人望而生畏。它们非常复杂。

本文讨论了人工智能和机器学习的局限性,因此软件购买者可以提出正确的问题以了解他们所购买的产品。

测试Oracle问题

某些人工智能或机器学习产品的局限性在于,对于该技术的某些应用,没有绝对的真实来源可与输出的准确性进行比较。例如,人类和机器都不知道如何为任何给定的应用程序生成一套完美的端到端测试。这是预言性的问题:没有客观的真理标准。没有人愿意在销售过程中引入这种不确定性。然而,我们的买家应该对我们的产品有充分的了解。

作为买家,在做出购买决定之前,需要了解卖家的人工智能产品的预期优势。它是否意味着在客观标准下做出比人类更准确的决定?它是否意味着以更少的成本做出更快的决定?或者引入一种以新方式使用新数据的替代方法?对这些问题的回答将影响买家如何使用产品以及它提供的价值。

人工智能和机器学习

尽管人工智能被普遍认为是“使用数学进行决策的任何机器”,但真正的人工智能是自学的。人工智能有一个神经网络,它模仿人脑中的神经元,使它能够自我教学、自我更新和自我进化。正因为如此,真正的人工智能很难构建,而且往往是实验性的,而不是商业性的。

更常见的是,当人们说人工智能实际上是机器学习时。机器学习是人类培训的:机器使用概率决策过程通过人类反馈来学习,而这种概率决策过程会通过不断进行的纠正而得到改善。机器接收数据,针对数据运行算法,然后根据概率输出决策。人们通过告诉机器评估是否准确来纠正机器,并更新机器。机器收到准确度反馈后,就会学会做出更好的决策。而且由于机器学习基于概率,所以有时会做出错误的决定。

根据买家计划使用产品的方式,需要确定其准确性的严格程度。机器可以多久做出一次错误的决定并仍然达到其目的,这取决于特定的应用程序。自动驾驶汽车必须几乎完全准确才能被采用。律师助理机器学习工具集可能需要降低准确性,那么其产品需要多精确?

提出正确的问题

无论买家打算如何使用产品,重要的是要提出正确的问题,以了解产品并围绕其准确性水平建立弹性。在销售方告诉买家“人工智能正在这样做”时,可以提出以下要求:

该产品是机器学习产品吗?是否需要机器学习才能获得有意义的结果?作为机器学习,产品需要通过人工反馈来学习,而不仅仅是使用概率来做出决策。买家是否只需要使用逻辑来做出决策的产品,还是随着时间推移而提高准确性的产品?

如何计算该产品的精度?如果不知道用于计算精度的条件,则不会知道机器是否比人类更准确。如果一台机器比人类的精度高30%,那么谁来评估这种精度以及他们如何确定这一精度?

怎么知道产品何时做出错误的决定?任何机器学习产品有时都会产生错误的输出。通常情况下,销售方最成功的客户已经采用了业务流程来增强对这种错误输出的适应能力。如果是这样,销售方也可以帮助买家采用它们。

在当前状态下,产品多久做出一次错误决定?了解错误的频率和这些错误的风险对于决定如何使用产品以及在产品开发的现阶段这样做是否安全至关重要。

该产品投入了多少教学时间?这个数字将简单估算出使产品更加准确所付出的努力。取决于应用程序,较小的数字可能很好。

如何提高该产品的准确性?买家是机器测试和教学过程中不可或缺的一部分。那么应该愿意使用其数据来提高其准确性,因为希望这些产品在将来得到改进。

为什么知道人工智能和机器学习很重要

不仅有很多不是人工智能的“人工智能”,而且还有不是机器学习的算法技术。因此,对于买家来说,有足够的知识来提出正确的问题,并了解这些产品如何做出决定至关重要。

所有机器学习产品都有限制,尽管限制因产品和产品应用方式而异。当产品的准确度未知时,买家所能做的就是询问其方法是否对决策有效:它是否能获得比人类更好的数据?使用此数据,它可以比人类做出更快、更明智的决策吗?如果答案是肯定的,那么买方应该考虑购买产品,而不是是自己开发。
责编AJX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 软件
    +关注

    关注

    69

    文章

    4955

    浏览量

    87581
  • 人工智能
    +关注

    关注

    1791

    文章

    47336

    浏览量

    238696
  • 机器学习
    +关注

    关注

    66

    文章

    8421

    浏览量

    132703
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    嵌入式和人工智能究竟是什么关系? 嵌入式系统是一种特殊的系统,它通常被嵌入到其他设备或机器中,以实现特定功能。嵌入式系统具有非常强的适应性和灵活性,能够根据用户需求进行定制化设计。它广泛应用于各种
    发表于 11-14 16:39

    人工智能机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2498次阅读
    <b class='flag-5'>人工智能</b>、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据和机器学习的能源管理系统,通过实时监测和分析能源数据,实现了能源的高效利用和智能化管理。 其次,第6章通过多个案例展示了人工智能
    发表于 10-14 09:27

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展和普及,RISC-V在
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    AI for Science的基础知识,梳理了产业地图,并给出了相关政策启示。 内容提要 人工智能驱动科学创新(AI for Science)带来的产业变革与每个人息息相关。本书聚焦于人工智能
    发表于 09-09 13:54

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    【《大语言模型应用指南》阅读体验】+ 基础篇

    今天开始学习《大语言模型应用指南》第一篇——基础篇,对于人工智能相关专业技术人员应该可以轻松加愉快的完成此篇阅读,但对于我还是有许多的知识点、专业术语比较陌生,需要网上搜索
    发表于 07-25 14:33

    【《大语言模型应用指南》阅读体验】+ 俯瞰全书

    ,了解此书的主要内容: 书分四篇,基础、入门、进阶和展望。 基础篇从人工智能起源开始、之后又介绍了机器学习、神经网络和大语言模型的基础知识,如果读者
    发表于 07-21 13:35

    人工智能机器学习和深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning,
    的头像 发表于 07-03 18:22 1315次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https
    发表于 05-10 16:46

    机器学习怎么进入人工智能

    人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是
    的头像 发表于 04-04 08:41 336次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    联网ARM开发 NB-IoT开发及实战 七:python工程师,人工智能工程师 python语法基础 python核心编程 基于OpenCV的机器视觉开发 嵌入式人工智能渗入生活的方方面面,广泛应用
    发表于 02-26 10:17

    生成式人工智能和感知式人工智能的区别

    生成新的内容和信息的人工智能系统。这些系统能够利用已有的数据和知识来生成全新的内容,如图片、音乐、文本等。生成式人工智能通常基于深度学习技术,如生成对抗网络(GANs)、变分自编码器(
    的头像 发表于 02-19 16:43 1780次阅读