0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

研究证明:机器学习可帮助瘫痪患者提供大脑活动学习控制电脑

如意 来源:OFweek电子工程网 作者:学术头条 2020-09-08 14:44 次阅读

9 月 7 日,影响因子比主刊 Nature 还高的《自然生物技术(Nature Biotechnology)》,发表了加州大学旧金山分校的一项突破性进展。

加州大学旧金山威尔研究所的神经科学研究人员通过一个人脑控制假肢的研究证明,机器学习技术可以帮助瘫痪患者通过大脑活动学习控制电脑光标,而不需要大量的日常再训练。

这项可以让大脑和机器学习系统随着时间推移建立稳定“伙伴关系”的“即插即用”技术的成功,正是过去所有脑机接口(BCI)研究工作一直追求的目标。

研究证明:机器学习可帮助瘫痪患者提供大脑活动学习控制电脑

“脑机接口领域近年来取得了很大的进步,但由于现有的系统每天都要重新设置和校准,它们还不能进入大脑的自然学习过程。这就像让一个人从头开始一遍又一遍地学习骑自行车。”加州大学旧金山分校神经学系副教授、研究资深作者、医学博士 Karunesh Ganguly 说,“让人工学习系统适应大脑复杂的长期学习模式,这在瘫痪患者身上是前所未有的。”

ECoG 电极阵列

皮层脑电图(ECoG)阵列包括一个便利贴大小的电极垫,通过手术放置在大脑表面。它们可以长期、稳定地记录神经活动,并已被批准用于癫痫患者的癫痫发作监测。

相比之下,过去的脑机接口技术往往使用的是“针垫”式的锋利电极阵列,这种阵列穿透脑组织能够获得更敏感的记录,但随着时间的推移,信号往往会转移或丢失。

为了证明了 ECoG 电极阵列在脑机接口应用中的价值,Ganguly 研究团队获得了在瘫痪患者中长期慢性植入 ECoG 阵列设备的批准,以测试其作为长期、稳定的 BCI 植入物的安全性和有效性。

在这项最新研究论文中,Ganguly 的团队记录了在四肢瘫痪患者身上使用 ECoG 电极阵列的情况。受试者还参与了一项临床试验,该试验旨在测试使用 ECoG 阵列来让瘫痪患者控制假肢手臂和手,不过在这篇新论文中,参与者使用植入物实现的是控制屏幕上的电脑光标。

此外,研究人员还开发了一种脑机接口算法,利用机器学习将 ECoG 电极记录的大脑活动与用户所需的光标移动相匹配。最初,研究人员遵循每天重置算法的标准做法。参与者首先想象特定的脖子和手腕动作,同时看着光标在屏幕上移动。

渐渐地,计算机算法开始自我更新,使光标的运动与由此产生的大脑活动相匹配,有效地将光标的控制权转交给用户。

由于患者每天都要开始这个过程,就会给在可以达到的控制水平上设置一个严格的限制。因为掌握设备的控制可能需要几个小时,有时参与者甚至不得不完全放弃。

然后,研究人员切换到允许算法继续更新以匹配参与者的大脑活动,而不用每天重新设置它。他们发现,大脑信号和机器学习增强算法之间的持续相互作用,会在许多天内导致性能的持续改善。最初,每天都有一些需要弥补的损失,但很快参与者就能够立即达到顶级水平的表现。

“即插即用”的脑机接口

“我们认为这是试图在大脑和计算机这两个学习系统之间建立伙伴关系,最终让人工界面成为用户的延伸,就像他们自己的手或手臂一样。”

研究人员表示,随着时间的推移,参与者的大脑能够放大神经活动模式,它可以利用 ECoG 阵列最有效地驱动人工接口,同时消除不太有效的信号,而这一过程很像大脑学习复杂任务的过程。

他们观察到,参与者的大脑活动似乎形成了一种根深蒂固的、一致的大脑“模式”来控制脑机接口,这种情况在日常的重置和重新校准中从未发生过。

经过几周的持续学习,当界面重新设置时,参与者迅速重新建立起控制设备的相同的神经活动模式——有效地将算法重新训练到原来的状态。

“一旦用户建立了控制界面的解决方案的持久记忆,就不需要重新设置,”Ganguly 说。“大脑很快就会汇聚到同一个解决方案上。”

研究表明,他们可以完全停止算法的自我更新,参与者可以简单地每天开始使用界面,而不需要再培训或重新校准。在没有再训练的 44 天里,表现没有下降,参与者甚至可以连续几天不练习,表现也几乎没有下降。

“我们一直注意到,我们需要设计出一种技术,它不会被束之高阁,而是能够切实改善瘫痪患者的日常生活。”Ganguly 说,这些数据表明,基于 ECoG 的脑机接口可以作为此类技术的基础。

而这种即时“即插即用”的脑机接口技术一直是该领域的重要挑战,因为大多数研究人员使用的“针形”电极往往会随时间移动,从而改变每个电极所捕获的信号。而且,由于这些电极穿透脑组织,免疫系统往往会排斥它们,逐渐削弱它们的信号。

ECoG 阵列虽然比传统植入物的敏感度低,但其长期稳定性似乎弥补了这一缺陷。ECoG 记录的稳定性对于更复杂的机器人系统(如假肢)的长期控制可能更为重要,这也是Ganguly 研究下一阶段的关键目标。
责编AJX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电脑
    +关注

    关注

    15

    文章

    1713

    浏览量

    68923
  • 人工智能
    +关注

    关注

    1792

    文章

    47387

    浏览量

    238889
  • 机器学习
    +关注

    关注

    66

    文章

    8423

    浏览量

    132755
收藏 人收藏

    评论

    相关推荐

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统机器
    的头像 发表于 12-30 09:16 243次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    【「具身智能机器人系统」阅读体验】1.全书概览与第一章学习

    非常感谢电子发烧友提供的这次书籍测评活动!最近,我一直在学习大模型和人工智能的相关知识,深刻体会到机器人技术是一个极具潜力的未来方向,甚至可以说是推动时代变革的重要力量。能参与这次
    发表于 12-27 14:50

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 121次阅读

    一文带你了解工业电脑

    您是否正在寻找适合您应用的工业电脑,但又不知道从哪里开始?以下是工业电脑和商用电脑之间的差异及其优势,帮助您找到合适的产品。工业
    的头像 发表于 12-02 15:12 136次阅读
    一文带你了解工业<b class='flag-5'>电脑</b>

    什么是机器学习?通过机器学习方法能解决哪些问题?

    来源:Master编程树“机器学习”最初的研究动机是让计算机系统具有人的学习能力以便实现人工智能。因为没有学习能力的系统很难被认为是具有智能
    的头像 发表于 11-16 01:07 443次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?通过<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法能解决哪些问题?

    NPU与机器学习算法的关系

    紧密。 NPU的起源与特点 NPU的概念最早由谷歌在其TPU(Tensor Processing Unit)项目中提出,旨在为TensorFlow框架提供专用的硬件加速。NPU的设计目标是提高机器学习算法的运行效率,特别是在处理
    的头像 发表于 11-15 09:19 504次阅读

    【书籍评测活动NO.51】具身智能机器人系统 | 了解AI的下一个浪潮!

    的互动形成。 随着具身智能机器人技术的快速发展,相关人才的需求也在不断增加,为了帮助大家系统性地总结和分析当前具身智能机器人系统的发展现状和前沿研究,为未来的
    发表于 11-11 10:20

    【《时间序列与机器学习》阅读体验】+ 时间序列的信息提取

    、特征的范数归一化。每个定义和命题都给出了证明过程和示例,示例还提供了Python代码,方便学习。 以下是特征的最小最大缩放的示例数据和代码: 由于我的本子有Python运行环境,编辑一个
    发表于 08-14 18:00

    【《时间序列与机器学习》阅读体验】+ 了解时间序列

    收到《时间序列与机器学习》一书,彩色印刷,公式代码清晰,非常精美。感谢作者,感谢电子发烧友提供了一个让我学习时间序列及应用的机会! 前言第一段描述了编写背景: 由此可知,这是一本关于时
    发表于 08-11 17:55

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习和深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随
    的头像 发表于 07-09 15:54 1014次阅读

    机器学习算法原理详解

    机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器学习
    的头像 发表于 07-02 11:25 1121次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习和深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器
    的头像 发表于 07-01 11:40 1423次阅读

    名单公布!【书籍评测活动NO.35】如何用「时间序列与机器学习」解锁未来?

    的从业经验。 针对工业界的相关从业者,本书将为你提供实用的工具和技术,以帮助你更好地处理时间序列数据。你将学习到如何使用不同的模型和算法来预测未来、检测异常、进行聚类等。本书中包含大量的示例和案例
    发表于 06-25 15:00

    Neuralink助力瘫痪患者重获数字世界自然交互体验

    据悉,全美现有大约18万四肢瘫痪患者,每年新增1.8万例脊髓伤害病例。由于与数字化世界互动困难,这类患者处于较弱的社会地位,面临着经济困境。为此,Neuralink致力于研发高性能脑机接口,
    的头像 发表于 05-09 11:24 378次阅读

    人工智能和机器学习的顶级开发板有哪些?

    机器学习(ML)和人工智能(AI)不再局限于高端服务器或云平台。得益于集成电路(IC)和软件技术的新发展,在微型控制器和微型计算机上实现机器学习
    的头像 发表于 02-29 18:59 851次阅读
    人工智能和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的顶级开发板有哪些?