引言
VHDL是一种硬件描述语言,于1983年被IEEE制定为国际标准IEEE1076。近年来国内引进和出版了不少教材,使其在国内得到迅速推广。由于VHDL最初目的是为了实现硬件的建模而被提出的,所以其措施能力超越了数字逻辑集成电路的范围。而现有的EDA工具基本上只能支持VHDL的子集,特别是针对FPGA/CPLD器件进行的不同的综合工具,其综合子集并非统一,不少初学者很难掌握。即使是部分有经验的设计者,对于通常高级语言中都会涉及的循环语句,在VHDL中往往也不能运用自如,甚至无法表达此类逻辑,从而限制了VHDL的应用水平。例如,VHDL的并行堆排序描述就是一个比较典型的例子。该实例十分类似通常数据结构的描述,推广前景诱人;但只能通过仿真,却不能在目前任何一个EDA工具进行综合,导致无实用价值。
本文从高级语言涉及最多的Loop语句出发,讨论如何在VHDL中解决这类问题。
1 无法综合的Loop动态条件
VHDL中Loop表达式有三种体现形式:While……Loop、For……Loop和单独的Loop语句。它还支持Next、Exit和标号,因此,循环语句的表达能力大于常规的C或PASCAL语言。程序1是利用For语句和While语句描述插入算法的部分代码。
程序1 不可综合的VHDL循环语句
……
for I in 2 to Length loop ---Length为一个变量
Temp:=MyList(I);
J:=I;
While(j》1)and MyList(j-1) MyList(j):=MyList(j-1);
j:=j-1;
End loop;
MyList(j):=Temp;
End loop;
……
对于第一个For语句,EDA工具Synplify综合时将会给出无边界的范围错误提示。
@E:“H:.vhd”|for loops with unbound ranges should contain w wait statement
即使部分优秀的综合工具,例如ORCAD Express、Mentor Grpahs QuickHDL等能够综合第一个For语句,也无法支持第二个While条例表达式。ORCAD Express将给出表达式不可静态计算的错误提示。
。.vhd(45):Error,expression does not evaluate to a constant.
由于程序1在C程序员看来是没有问题的,因此,初学者往往不能解决好此类问题,从而使学习陷入困境,无法充分利用VHDL来表述逻辑。
2 直接代换法
对于第一类无边界的范围错误问题,可以用循环的综合机制转化为相应的语句。例如下面代码:
for I in 0 to 1 loop
Out_Bus(i)《=In_Bus(i);
End loop;
其对应综合后的电路见图1。
图1 For语句的综合示例
相应的,也可以用下列语句直接代入代换:
Out_Bus(0)《=In_Bus(0);
Out_Bus(1)《=In_Bus(1);
程序1可以采用下列VHDL代码表示:
K:=2;
Temp:=MyList(2);
If(MyList(1) MyList(2):=MyList(1);
J:=1;
End if;
MyList(J):=Temp;
J:=3;
Temp:=MyList(3);
If(MyList(2) MyList(3):=MyList(2);
J:=2;
End if;
If(MyList(1) MyList(2):=MyList(1);
J:=1;
End if;
MyList(J):=Temp;
……
然而,这种使用方法要求设计者清楚循环条件一定会执行的次数,否则将无法实施。当循环次数比较大时,代码编写工作量将十分庞大,因此可以采用第二种方法——边界扩充法。
3 边界扩充法
边界扩充法是指在边界未定时,可以将边界定为最大可能的范围,即用静态表达来替代。例如程序1的代码可以改写为:
constant MAX:integer=100; --MAX必须大于MyLen所有可能的取值
……
Out_loop:for I in 2 to MAX loop
Exit out_loop when I》MyLen; --MyLen为变量
Temp:=MyList(I);
countj:=I;
inter_loop:for j in I downto 2 loop
countj:=j;
exit inter_loop when MyList(j-1) MyList(j):=MyList(j-1);
End loop;
MyList(countj):=Temp;
End loop;
尽管这种方法可以处理未知边界和未定表达式的情况,但十分消耗空间,特别是当MyLen相对MAX比较小的时候,代价非常大。此时,可以利用时间换空间的方法进行转换。
4 计数器法
计数器法是指引入时钟和计数器,用计数器对边界条件进行控制,也可以将动态表达式直接代入转化相应的静态表达式。例如,上述代码的For条件可以用下列代码替换:
if(Reset=‘1‘)then
I:=2;
Elsif clk=‘1‘and clk‘event then
Temp:=MyList(I);
J:=2;
While(j》1)and MyList(j-1) MyList(j):=MyList(j-1);
j:=j-1;
End loop;
MyList(j):=Temp;
I:=(I+1);
If(I=MyLen+1)then I:=2;end if;
End if;
相比原来的代码,引入了1个时钟和1个复位。但综合开销最大的循环语句却被取代了,因此,综合产生门的数目将大幅度下降,但处理时间将相应延长到原来循环条件范围。
本刊网络补充版中发表了四个源代码,分别为不可综合例子、直接代换法、边界扩充法和计算器法,内部都有相应注释。其中计数器法改进为双计数器方法。
结语
以上三种方法各有优缺点,不可一概而论,可以根据实际情况处理。直接代换法一般用于循环次数少的情况;边界扩充法一般用于循环次数接近最大边界时;计数器方法一般用于芯片内部时钟相对信号时钟快许多的情况。
责任编辑:gt
-
FPGA
+关注
关注
1625文章
21663浏览量
601666 -
cpld
+关注
关注
32文章
1247浏览量
169191 -
vhdl
+关注
关注
30文章
816浏览量
128073
发布评论请先 登录
相关推荐
评论