Skylum发布了Luminar AI,这是其照片编辑软件的最新版本,该软件利用人工智能执行复杂的编辑任务。
Luminar AI在将机器学习集成到照片编辑过程中的过程比以前的版本更进一步。功能包括用于细化人像的Body AI和Face AI。Iris AI使您可以微调对象的眼睛,而Skin AI可以消除瑕疵。
风景摄影师使用Sky Enhancer和Atmosphere AI工具向天空添加细节。或Sky AI将使您完全取代天空。
其他工具,例如“黄金时段”和“阳光”,可让您增强场景中的阳光。
Structure AI可让您挑逗细节和纹理,而Accent AI可以微调您的曝光和色彩。
Luminar AI将作为独立应用程序和适用于macOS和Windows的插件提供。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
人工智能
+关注
关注
1791文章
46840浏览量
237513 -
应用程序
+关注
关注
37文章
3240浏览量
57596 -
机器学习
+关注
关注
66文章
8375浏览量
132398
发布评论请先 登录
相关推荐
《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感
、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据和机器学习的能源管理系统,通过实时监测和分析能源数据,实现了能源的高效利用和智能化管理。
其次,第6章通过多个案例展示
发表于 10-14 09:27
AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感
很幸运社区给我一个阅读此书的机会,感谢平台。
《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工
发表于 10-14 09:21
《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得
人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络等。这些技术构成了AI for Science的基石,使得AI能够处理和分析复杂的数据集,从而发现隐藏在数据中的模式和规
发表于 10-14 09:16
《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得
,还促进了新理论、新技术的诞生。
3. 挑战与机遇并存
尽管人工智能为科学创新带来了巨大潜力,但第一章也诚实地讨论了伴随而来的挑战。数据隐私、算法偏见、伦理道德等问题不容忽视。如何在利用AI
发表于 10-14 09:12
risc-v在人工智能图像处理应用前景分析
长时间运行或电池供电的设备尤为重要。
高性能 :
尽管RISC-V架构以低功耗著称,但其高性能也不容忽视。通过优化指令集和处理器设计,RISC-V可以在处理复杂的人工智能图像处理任务时表现出色。
三
发表于 09-28 11:00
名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新
活的世界?
编辑推荐
《AI for Science:人工智能驱动科学创新》聚焦于人工智能与材料科学、生命科学、电子科学、能源科学、环境科学五大领域的交叉融合,通过深入浅出的语言和诸
发表于 09-09 13:54
报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI
8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能
发表于 08-22 15:00
利用人工智能改变 PCB 设计
人工智能在PCB设计中展现出不可否认的潜力,但是工程师们自然对其影响有所顾虑。关于工作保障和责任的等问题常常浮现:人工智能会夺走我的工作吗?如果人工智能出错,我会被指责吗?然而,人工智能
FPGA在人工智能中的应用有哪些?
FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面:
一、深度学习加速
训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
发表于 07-29 17:05
大模型应用之路:从提示词到通用人工智能(AGI)
铺平道路。 基于AI大模型的推理功能,结合了RAG(检索增强生成)、智能体(Agent)、知识库、向量数据库、知识图谱等先进技术,我们向实现真正的AGI(通用人工智能)迈出了重要步伐。
NanoEdge AI的技术原理、应用场景及优势
是指将数据处理任务从云端迁移到离数据源更近的设备上,以实现更快的响应时间和更低的延迟。神经网络压缩技术则通过减少模型参数和计算量来降低设备的计算需求,使其能够在有限的资源下运行复杂的人工智能算法。低功耗
发表于 03-12 08:09
嵌入式人工智能的就业方向有哪些?
。 国内外科技巨头纷纷争先入局,在微软、谷歌、苹果、脸书等积极布局人工智能的同时,国内的BAT、华为、小米等科技公司也相继切入到嵌入式人工智能的赛道。那么嵌入式AI可就业的方向有哪些呢? 嵌入式
发表于 02-26 10:17
英特尔、谷歌、英伟达运用人工智能推动处理器设计与生产
两家著名的芯片设计软件企业,Cadence和Synopsys,均利用人工智能强化设计工具。谷歌展示了使用人工智能开发AI加速度器的方法。英伟达亦在产品制造过程中运用大量
评论