0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能的目标是推动机器智能的前沿

倩倩 来源:文财网 2020-09-16 15:44 次阅读

任何致力于将机器学习应用于现实世界问题的研究人员都可能会收到这样的答复:“作者提出了针对原始且具有高度动机的问题的解决方案,但这是一种应用,对于机器来说,其意义似乎是有限的,学习社区。”

这些话直接来自对我提交给NeurIPS(神经信息处理系统)会议(机器学习研究的顶级场所)的论文的评论。我在论文的评论中一再看到这种限制,我和我的合著者提出了一种受应用程序启发的方法,而且我也听到过无数其他人的类似故事。

这让我感到奇怪:如果社区认为以机器学习解决高影响力的现实世界问题的意义有限,那么我们要努力实现什么?

人工智能(pdf)的目标是推动机器智能的前沿。在机器学习领域,新颖的开发通常意味着新的算法或过程,或者在深度学习的情况下,意味着新的网络体系结构。正如其他人所指出的那样,这种对新颖方法的过度关注导致论文泛滥成灾,这些论文报告了基准数据集的边际或增量改进,并且随着研究人员争夺排行榜的头衔而出现了奖学金不足(pdf)。

同时,许多描述新应用的论文都提出了新颖的概念和高影响力的结果。但是,即使是“申请”一词的暗示,也似乎使审稿人看不惯论文。结果,这样的研究在主要会议上被边缘化了。他们的作者唯一真正的希望是让他们的论文在研讨会上被接受,而这些研讨会却很少受到社区的关注。

这是一个问题,因为机器学习在促进健康,农业,科学发现等方面具有广阔的前景。黑洞的第一个图像是使用机器学习生成的。蛋白质结构的最准确预测是药物发现的重要步骤,它是使用机器学习进行的。如果该领域的其他人优先考虑现实世界的应用程序,那么到现在我们还会做出哪些突破性的发现?

这不是新的启示。引用美国宇航局计算机科学家Kiri Wagstaf f的经典论文“重要的机器学习”(pdf):“当前的许多机器学习研究都与广泛的科学和社会的引入问题失去联系。” 瓦格斯塔夫(Wagstaff)发表论文的同一年,一个名为AlexNet的卷积神经网络赢得了以流行的ImageNet数据集为中心的备受瞩目的图像识别竞赛,这引起了对深度学习的兴趣激增。不幸的是,自那以后,她描述的脱节似乎变得更加严重。

错误的问题

边缘化应用研究具有真正的意义。基准数据集(例如ImageNet或COCO)是推进机器学习的关键。它们使算法能够在相同数据上进行训练和比较。但是,这些数据集包含可以建立到结果模型中的偏差。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1792

    文章

    47378

    浏览量

    238882
  • 应用程序
    +关注

    关注

    37

    文章

    3283

    浏览量

    57745
  • 机器学习
    +关注

    关注

    66

    文章

    8423

    浏览量

    132752
收藏 人收藏

    评论

    相关推荐

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    人工智能机器人技术和计算系统交叉领域感兴趣的读者来说不可或缺的书。这本书深入探讨了具身智能这一结合物理机器人和智能算法的领域,该领域正在
    发表于 12-28 21:12

    【「具身智能机器人系统」阅读体验】+初品的体验

    动态互动的。 该理论强调智能行为源于智能体的物理存在和行为能力,智能体必须具备感知环境并在其中执行任务的能力。具身智能的实现涵盖了机器学习、
    发表于 12-20 19:17

    嵌入式和人工智能究竟是什么关系?

    嵌入式和人工智能究竟是什么关系? 嵌入式系统是一种特殊的系统,它通常被嵌入到其他设备或机器中,以实现特定功能。嵌入式系统具有非常强的适应性和灵活性,能够根据用户需求进行定制化设计。它广泛应用于各种
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和技术原理。这使得我对人工智能
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 在阅读这一章后,我对未来生命科学的发展充满了期待。我相信,在人工智能技术的推动下,生命科学将取得更加显著的进展。例如,在药物研发领域,AI技术将帮助科学家们更加
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    ,无疑为读者铺设了一条探索人工智能(AI)如何深刻影响并推动科学创新的道路。在阅读这一章后,我深刻感受到了人工智能技术在科学领域的广泛应用潜力以及其带来的革命性变化,以下是我个人的学习心得: 1.
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着人工智能技术的不断发展和普及,RISC-V在人工智能图像处理领域的
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    材料基因组工程的推动下,人工智能如何与材料科学结合,加快传统材料和新型材料的开发过程。 第4章介绍了人工智能在加快药物研发、辅助基因研究方面及在合成生物学中的普遍应用。 第5章介绍了人工智能
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能领域集产品
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    ://t.elecfans.com/v/27221.html *附件:初学者完整学习流程实现手写数字识别案例_V2-20240506.pdf 人工智能 语音对话机器人案例 26分03秒 https
    发表于 05-10 16:46

    机器学习怎么进入人工智能

    人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是一类基于样本数据和模型训练来进行预测和判断的
    的头像 发表于 04-04 08:41 343次阅读

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    *附件:初学者完整学习流程实现手写数字识别案例.pdf 人工智能 语音对话机器人案例 26分03秒 https://t.elecfans.com/v/27185.html *附件:语音对话机器
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    联网ARM开发 NB-IoT开发及实战 七:python工程师,人工智能工程师 python语法基础 python核心编程 基于OpenCV的机器视觉开发 嵌入式人工智能渗入生活的方方面面,广泛应用
    发表于 02-26 10:17

    生成式人工智能和感知式人工智能的区别

    生成新的内容和信息的人工智能系统。这些系统能够利用已有的数据和知识来生成全新的内容,如图片、音乐、文本等。生成式人工智能通常基于深度学习技术,如生成对抗网络(GANs)、变分自编码器(VAEs)等。 生成式人工智能的研究
    的头像 发表于 02-19 16:43 1800次阅读