0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

量子可逆电路和移除垃圾比特的方案

454398 来源:博客园 作者:夏天喵 2020-11-09 14:41 次阅读

量子电路的两点特殊

Axiom 1:Superposition principle

量子态是可以叠加的。

而叠加态的性质赋予了量子指数增长的可能。

一个量子比特就是二维Hilbert空间中的向量,两个量子比特就是四维Hilbert空间的中向量,三个就是八维,nn个量子比特就是2n2n维Hilbert空间中的向量。

另外,需要注意的一点是,即使我只是在一个量子比特上操作,变化的也是整个系统。

Axiom 2:Unitary Evolution

量子电路和经典另一个重要的不同就是量子电路是可逆的。

经典电路没有可逆的要求,比如OR门,如果输出是1,你知道输入是什么吗?(1,1)、(1,0)、(0,1)都有可能,因为信息丢失了,四种输入的可能,输出却只有两种,信息丢失了。

而量子的操作变换则必须是酉变换,即,可逆,我可以根据我输出的信息反推我的输入。

量子可逆电路

经典可逆电路其实是比较容易的。

NOT门,他自己就是可逆的,取反再取反就是本身。

AND门,C-SWAP门其实就可以代替AND门

将z固定为0,则c只有在x和y都为1的时候为1,其余时候为0,满足AND门的要求。同时因为有a和b的存在,可以轻易的推导出x,y。

如果将希望能够从输出推导出输入,那么显然,会有junk bit(垃圾比特)的存在,即除了我们想要目标以外的结果,不是我们想要的目的,但是是我们推导输入不可或缺的存在,对于C-SWAP门来说,就是a,b。

junk bit对于经典比特来说,就是多出来的比特而已,但是对于量子比特来说,却是需要被remove的东西。如果不处理,会影响后续的计算。所以说,设计量子电路,第一个问题其实不是量子电路能够比经典电路加速多少倍,而是量子电路是否可以做到经典电路做到的事。

为什么要移除垃圾比特

对于经典比特来说,我不需要的比特,直接不要就可以了。我的后续操作中不涉及这些垃圾比特就没有关系,但是因为有量子相干的存在,如果我直接不管垃圾比特会让后续的测量得到完全不一样的结果。

例子:

令我们的目标函数是f(x)=x,A是没有垃圾比特的情况,即,我们输入什么输出什么。而B是有垃圾比特情况,第一个比特存目标答案,f(x)=x,第二个比特是我们的垃圾比特,假设这里的垃圾比特是junk(x)=x。

例子A:

在A的情况下,如果我们的输入是12√|0〉+12√|1〉12|0〉+12|1〉,经过A门,还是12√|0〉+12√|1〉12|0〉+12|1〉,在H门后,我们的比特又变成了|0〉|0〉,此时测量,得到的结果一定是|0〉|0〉。

例子B:

在B的情况下,如果我们的输入是(12√|0〉+12√|1〉)|0〉(12|0〉+12|1〉)|0〉,经过A门,则变成了12√|00〉+12√|11〉12|00〉+12|11〉,此时对第一个比特进行H门操作,得到结果12|00〉+12|10〉+12|10〉−12|10〉12|00〉+12|10〉+12|10〉−12|10〉。此时对第一个比特测量,得到的结果是|0〉|0〉或者是|1〉|1〉的概率是一样的。

因为有了第二个比特的存在,所以上述式子中的−−不能直接抵消第一个比特为|1〉|1〉的可能性,这也就是垃圾比特不得不移除的原因。

如何移除垃圾比特

垃圾比特对后续有影响,那么将他移除就好了,因为量子的操作是可逆的,所以怎么来的怎么回去。

但是在回去之前,把我们需要的目标C(x)C(x)的量子态用CNOT门复制出来就好。这样就得到了没有垃圾比特的结果。

可能有人想问,不是量子态不能复制吗?事实上,我们并没有复制C(x)C(x)的结果,当我们把结果从原来的比特上转移到y上后,原来的比特和垃圾比特又通过逆操作返回了最初的情况。垃圾比特最初的状态是|0〉|0〉,并非叠加态的情况,量子的纠缠或者相干是因为有量子叠加态,不是纯态的原因,而今回到纯态,就不在造成影响。

编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子电路
    +关注

    关注

    0

    文章

    3

    浏览量

    1787
收藏 人收藏

    评论

    相关推荐

    寻找超导量子比特信息丢失的原因

    一项新研究为超导量子比特中的信息是如何丢失的提供了新线索。 今天谈一个全世界都非常关注的东西——超导量子比特。 我们知道,量子计算可能为我们
    的头像 发表于 11-21 10:11 75次阅读

    【《计算》阅读体验】量子计算

    鉴于本书叙述内容着实很丰富,带有科普性质。这里选择感兴趣也是当前科技前沿的量子计算进行阅读学习分享。 量子计算机操作的是量子比特,可以基于量子
    发表于 07-13 22:15

    玻色量子发布新一代550计算量子比特相干光量子计算机

    2024年4月18日,北京玻色量子科技有限公司(以下简称“玻色量子”)以“新质互融,算力共振”为主题,在北京·望京成功召开2024年新品发布会,重磅发布了新一代550计算量子比特的相干
    的头像 发表于 04-19 15:06 458次阅读
    玻色<b class='flag-5'>量子</b>发布新一代550计算<b class='flag-5'>量子</b><b class='flag-5'>比特</b>相干光<b class='flag-5'>量子</b>计算机

    Quantinuum 与 Microsoft 合作进行可靠逻辑量子比特的突破性演示,迈入可靠量子计算的新阶段

    采用 Microsoft 量子比特虚拟化系统的 Quantinuum 最新一代量子计算机,展示了逻辑错误率比物理错误率低 800 倍的逻辑量子比特
    的头像 发表于 04-07 16:50 374次阅读

    量子计算机重构未来 | 阅读体验】 跟我一起漫步量子计算

    的干扰,保持量子比特的稳定性是一个巨大的技术难题。此外,量子编程和算法的发展也还处于初级阶段,需要更多的研究和探索。 尽管面临挑战,但量子计算机的发展前景依然广阔。随着技术的不断进步和
    发表于 03-13 19:28

    量子

    当我们谈论量子计算机时,通常是在讨论一种利用量子力学原理进行计算的全新计算机系统。与传统的计算机使用二进制位(0和1)来表示数据不同,量子计算机使用量子
    发表于 03-13 18:18

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    中的处理器(CPU)就是由许多逻辑门电路组成的。 量子计算机与电子计算机最大的区别在于它们使用量子比特(qubit)而不是电子比特(bit)
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】+量子计算机的原理究竟是什么以及有哪些应用

    计算方法的区别传统方法是,按照不走枚举所有情况,而量子计算是一次处理所有情况,是一步到位。但是这里又有疑惑了,量子计算如何实现的一步到位呢, 这里引入了量子比特和传统计算机
    发表于 03-11 12:50

    量子计算机重构未来 | 阅读体验】第二章关键知识点

    量子计算机的工作原理--量子叠加的概念。即手指朝上代表逻辑1,手指朝下代表逻辑0,但是呢,如果手指超中间怎么表示呢?这就是量子比特中的量子
    发表于 03-06 23:17

    量子计算机重构未来 | 阅读体验】初探

    ,自己专门去查阅了网上的资料,发现量子计算能用一个量子比特表示以前需要多个门电路组合才能表示的数据。也就意味着,以前需要复杂门电路实现的逻辑
    发表于 03-04 23:09

    中国台湾开发出5量子比特超导量子计算机

    据了解,“中研院”在2023年底成功研制五量子比特芯片,且量子位元逻辑闸的保真度高达99.9%,现已成功制造量子计算机并实现联网运行。除为合作伙伴提供研究和测试支持外,此设备还可用作极
    的头像 发表于 01-29 14:31 941次阅读

    量子计算机的作用有哪些

    量子计算机是一种基于量子力学原理的新型计算机,它利用量子比特(qubit)进行信息处理,具有传统计算机无法比拟的计算能力和潜力。量子计算机的
    的头像 发表于 12-30 14:32 1826次阅读

    量子比特的“记忆力”——相干时间

    通常来说,一个人记忆力越好,他能整合、处理的信息就越多。传说鱼的记忆力只有7秒!这可能是它们没有统治世界的原因。在量子计算中,量子比特所能“记住”的量子状态越久,其所能进行的计算次数也
    的头像 发表于 12-27 08:25 1684次阅读
    <b class='flag-5'>量子</b><b class='flag-5'>比特</b>的“记忆力”——相干时间

    全球开启量子计算芯片技术竞赛 IBM发布旗舰量子处理器Heron

    从路线图上可以清晰地看到,IBM对于量子比特的未来充满信心,相信在未来的某个时刻,量子比特的限制将不再是制约量子计算机规模的关键因素。
    发表于 12-26 14:34 668次阅读
    全球开启<b class='flag-5'>量子</b>计算芯片技术竞赛 IBM发布旗舰<b class='flag-5'>量子</b>处理器Heron

    什么是逻辑量子比特?怎样用其实现量子纠错呢?

    逻辑量子比特(Logical Qubit)由多个物理量子比特组成,可作为量子计算系统的基本计算单元,因其具有较强的纠错性能而备受关注。
    的头像 发表于 12-21 18:24 962次阅读
    什么是逻辑<b class='flag-5'>量子</b><b class='flag-5'>比特</b>?怎样用其实现<b class='flag-5'>量子</b>纠错呢?