科学家们正努力地对不断增长的地震数据进行人工解释,以探索地震的原因,特别是在该地区地质条件复杂的情况下,他们现在正在使用基于机器学习的解决方案来帮助自动解释这些数据。
从地表地震数据中有效地探测地下地质特征对于理解大地构造、盆地演化、资源勘探以及引起区域地震(地震发生)的过程非常重要。为此,地震数据的获取不断增长,使得处理过程在计算上很费力并且解释繁琐。得益于高性能的计算系统,该系统可以在收到口译员的指导和输入后的合理时间内对此类海量数据进行分析。然而,人类分析人员很难进行人工解释,特别是在该地区地质复杂、数据丰富的情况下。
为了使这一过程自动化并加快解释速度,印度政府科学技术部下设的自治研究所——喜马拉雅地质研究所(WIHG)的科学家开发了一种基于神经(机器学习)的实用方法,用于自动解释3D地震数据。这种第一种方法通过计算一种称为元属性的新属性而开发。
较老的沉积岩层或火山熔岩层(基岩复合体)之间的板状片状侵入显着促进了热岩浆的运输和储存,并导致覆盖层。这可以作为沉积盆地中油气聚集的合理构造圈闭。新西兰近海坎特伯雷含油气盆地就是一个典型的例子,在那里,白垩纪至始新世(约1.45亿至3390万年前的地质时期)序列中嵌入了碟形岩浆岩床,导致在岩床末端上方形成了强制褶皱和热液喷口。
WIHG的科学家通过设计工作流程并计算SillCube(SC)和FluidCube(FC)元属性来捕获这种情况。这些是混合属性,是通过使用基于神经的方法将许多地震属性(与地质目标关联)合并而生成的。这项研究发表在研究期刊“构造物理学”上。WIHG团队在监督的神经学习(机器学习)之后准备了元属性,其中在人类分析师的指导下训练计算系统。
根据这项研究的结果,单个岩床的面积分别为1.5平方公里到17平方公里。此外,熔解的岩浆流体通过热液喷口垂直上升至800m左右的高度,并抬升覆盖层。这种解释方法是自动化的,可以有效地从三维地震数据中描述地下岩浆活动。
这项工作是朝着应用机器学习解决地质问题迈出的重要一步,并且在理解喜马拉雅山等活跃山区的复杂地质过程中很有希望。 (编译/Cassie) By PIB Delhi
转载:千家网
原文标题:机器学习解决方案使地理资源的探索更简单
文章出处:【微信公众号:物联网技术】欢迎添加关注!文章转载请注明出处。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
原文标题:机器学习解决方案使地理资源的探索更简单
文章出处:【微信号:iotmag,微信公众号:iotmag】欢迎添加关注!文章转载请注明出处。
相关推荐
随着人工智能技术的飞速发展,机器学习算法在各个领域中扮演着越来越重要的角色。长短期记忆网络(LSTM)作为一种特殊的循环神经网络(RNN),因其在处理序列数据方面的优势而受到广泛关注。
发表于 11-13 10:17
•302次阅读
能力而受到广泛关注。 1. 引言 情感分析在商业智能、客户服务、社交媒体监控等领域具有广泛的应用。传统的情感分析方法依赖于手工特征提取和机器学习算法,但这些方法往往难以处理文本中的长距
发表于 11-13 10:15
•296次阅读
BitEnergy AI公司,一家专注于人工智能(AI)推理技术的企业,其工程师团队创新性地开发了一种名为线性复杂度乘法(L-Mul)的AI处理方法。该
发表于 10-22 15:15
•321次阅读
BP神经网络(Backpropagation Neural Network),即反向传播神经网络,是一种基于梯度下降算法的多层前馈神经网络,其学习
发表于 07-10 15:49
•446次阅读
RUP(Rational Unified Process,统一建模语言)是一种软件开发过程模型,它是一种迭代和增量的软件开发
发表于 07-09 10:13
•1137次阅读
人工神经网络(Artificial Neural Networks,简称ANNs)是一种受生物神经网络启发而产生的数学模型,用于模拟人脑处理信息的方式。它由大量的节点(或称为神经元)相
发表于 07-04 16:57
•748次阅读
人工神经网络(ANN)与传统机器学习模型之间的不同,包括其原理、数据处理能力、学习方法、适用场景及未来发展趋势等方面,以期为读者提供一个全面
发表于 07-04 14:08
•1002次阅读
卷积神经网络(Convolutional Neural Networks,CNN)是一种深度学习模型,广泛应用于图像分类、目标检测、语义分割等计算机视觉任务。本文将详细介绍卷积神经网络
发表于 07-03 09:40
•388次阅读
和工作原理。 1. 引言 在深度学习领域,卷积神经网络是一种非常重要的模型。它通过模拟人类视觉系统,能够自动学习图像中的特征,从而实现对图像的识别和分类。与传统的
发表于 07-03 09:38
•420次阅读
神经网络是一种强大的机器学习算法,广泛应用于各种领域,如图像识别、自然语言处理、语音识别等。本文详细介绍了基于神经网络算法的模型构建
发表于 07-02 11:21
•430次阅读
受限的微控制器单元(microcontroller units,MCU)上,内存和计算能力有限。在这项工作中,我们使用模型压缩技术来弥补这一差距。我们在HW上对RNN施加约束,并描述了一种方法来满足它们
发表于 06-07 11:29
[22]。就像平均池化一样,最大池化是另一种用于减小特征图大小的常用方法。它通过仅取每个区域的最大值来获得最重要的特征。在机器学习中,池化
发表于 05-11 20:01
,也正积极的为其开发专用的 AI 硬件,用于自己的云产品和边缘计算产品环境中。
神经形态芯片 方面也有着一些发展,这是一种专门为神经网络设计
发表于 03-21 15:19
外媒消息,韩国首尔国立大学与成均馆大学的研究团队联合开发了一种在石墨烯层上生长柔性GaN LED阵列的方法,通过该技术研究团队生长出了LED微型阵列,并称作微盘阵列(Microdisks arrays)。
发表于 12-18 10:07
•884次阅读
12月11日,外媒消息,韩国首尔国立大学与成均馆大学的研究团队联合开发了一种在石墨烯层上生长柔性GaN LED阵列的方法,通过该技术研究团队生长出了LED微型阵列
发表于 12-13 16:06
•731次阅读
评论