0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

SHG 图像可以通过传统的双光子激发荧光显微镜(TPM)获得?

lhl545545 来源:与非网 作者:佚名 2020-09-21 10:32 次阅读

在非线性光学显微镜中,二倍频(SHG)成像通常用于观测内源性纤维状结构,且 SHG 的强度很大程度上取决于入射光束的偏振方向与目标分子取向轴之间的相对角度。因此,基于偏振的 SHG 成像(P-SHG),可通过分析 SHG 信号强度与入射光束的偏振态之间的函数关系,来获得目标分子的结构信息。其现在已用作医学和生物学分析的重要工具。

简单的 SHG 图像可以通过传统的双光子激发荧光显微镜(TPM)获得。大多数 TPM 系统仍采用基于运动镜面的单束扫描方法,其时间分辨率取决于镜面的物理移动速度。为了实现更高速的成像,TPM 系统还可以采用多束扫描的方法(图 1A),其中之一便是利用转盘扫描单元。该单元由共轴的微透镜转盘和针孔转盘构成,两个转盘上的微透镜和针孔一一对应。

激光在通过微透镜转盘时,波前会覆盖多个微透镜,不同微透镜将波前各部分聚焦到不同的位置,并穿过对应的针孔,形成多个微光束。这些微光束打到样品上,可同时激发多个信号。这些信号沿显微镜系统返回并再次穿过针孔,最后被两个转盘之间的二向色镜反射到检测装置中。然而,常规使用的锁模钛宝石激光器作为光源能量不足,限制了激发光束的数量,导致使用转盘扫描单元的 TPM (TPM-SD) 的有效视场 (FOV) 很小。

Ai Goto 等人想通过 TPM-SD 系统实现高速的 P-SHG 成像,并保证大的 FOV,故在 TPM-SD 系统中引入了峰值功率更高的基于 Yb 的激光光源。

图 1 是他们开发的 TPM-SD 系统示意图。该系统光源为基于 Yb 的激光器,产生的飞秒脉冲中心波长为 1042 nm、平均功率 4 W、脉宽 300 fs,重复频率 10 MHz。系统首先通过半波片和格兰激光偏振器来调节激光功率,接着通过扩束器进行扩束,扩束后的光束被引入到转盘扫描单元中,接着从扫描单元出来的多个微光束通过水浸物镜被聚焦在样品的多个点上。为了调整光束在物镜处的偏振态,激发光束的光路上放置了一个半波片和一个四分之一波片。

为了测量样品上入射光束的偏振态,在物镜后端放置了一个线性偏振膜。在这项研究中,他们使用了圆偏振光(图 1B;椭圆度 0.95)和 4 种线偏振光束(图 1C-F;椭圆度 0.2-0.3)。以 FOV 的水平轴为基准,将横向偏振角设置为 0、45、90 和 135°。物镜收集到的荧光或 SHG 光通过针孔转盘,被二向色镜反射至偏振分束器。偏振分束器将信号分离为一对偏振分辨信号,它们被放大倍数为×1.2 的中继透镜分别聚焦在电子倍增 CCD 相机的不同方形检测区域上,从而同时获取一对矩形图像。轴向扫描是通过压电驱动器实现的。

总之,该组通过 TPM-SD 系统,开发了一种高速的偏振分辨成像方法。他们使用该系统对固定的小鼠皮肤样品和骨骼肌样品(离体)以及活体小鼠的骨骼肌进行了成像,证明了该系统能以 56 Hz 的时间分辨率对体内组织成像,获取胶原纤维的结构信息。

SHG 图像可以通过传统的双光子激发荧光显微镜(TPM)获得?

图 1 (A) TPM-SD 系统;(B–F) 通过调整 HWP 和 QWP 的位置,改变入射光脉冲在样品上的偏振态。

非线性成像技术的优化,除了基于图像获取模式的优化,还可以从先进的图像处理算法入手。发展图像的实时分析工具,以帮助病理学家快速表征组织特性,实现自动化的病症诊断,具有极大的推动医学发展的潜力。目前,用于自动提取疾病特征的用户独立算法引起了越来越多的关注。2019 年,Riccardo Scodellaro 等人开发了一种针对 P-SHG 的图像处理方法——μMAPPS(Microscopic Multiparametric Analysis by Phasor projection of Polarization-dependent SHG signal)。其原理是对每个像素的随入射光偏振态变化的 SHG 信号()进行二维相量分析,从中分析出各像素对应胶原蛋白纤维的平均取向角 (θF)和极化率各向异性参数(γ,极化率张量χ(2)的非对角线和对角线元素的比),并依此获得组织细胞外基质(ECM)中胶原蛋白的微结构信息。

该组的最终目标为无人员操作,全自动化,基于μMAPPS 算法的病理学诊断:通过区分不同组织中不同的胶原蛋白结构,来区分正常组织和癌变组织。具体方法为,先通过μMAPPS 重构每个像素的和信息,接着,将整个图像划分为包含大量感兴趣区域(ROI)的网格,对每个 ROI 的所有像素应用聚类算法,将和类似的像素归为一类(簇),至此,每个 ROI 的像素都被分为了数十个簇,然后,基于不同 ROI 中不同的分簇,定义一组参数 (p 参数:簇数(NC),簇元素比(CER,每个簇与最大像素数量的簇,所含像素数量之比),和熵(S)), 以量化各 ROI 中胶原蛋白结构的无序性。

最后,以所有 ROI 参数的平均值为基准,将各 ROI 区分为正常组织或癌变组织,并对应投影回原图像中。图 2 是基于熵值的肿瘤边缘分割结果。该组通过研究 CT26(结肠癌)和 4T1(乳腺癌)两种癌症模型,测试了该方法自动区分肿瘤和健康组织区域的准确率,并证明熵是在同一组织类型内,区分肿瘤与健康区域,判别肿瘤边缘的最佳参数。

图 2 (A, B) 基于熵(S)的感兴趣区域(ROI)的分析结果。每个 150×150 ?m2 的 ROI(A, B)都按照图例进行了颜色编码,以表示 CT26 的癌变区域(A)和 4T1 的癌变区域(B),及其中检索到的熵值。(C, D) 将 ROI 分析结果反投影到 CT26 (C)和 4T1 (D) 肿瘤模型的原图像平面,并分割出癌变部分的图像。红色虚线表示肿瘤和正常组织的边界。
责任编辑:pj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 激光器
    +关注

    关注

    17

    文章

    2495

    浏览量

    60273
  • 显微镜
    +关注

    关注

    0

    文章

    546

    浏览量

    22994
  • 微透镜
    +关注

    关注

    1

    文章

    23

    浏览量

    9086
收藏 人收藏

    评论

    相关推荐

    共聚焦激光显微镜对比超分辨显微镜

    显微镜(CLSM) 1.1 工作原理 共聚焦激光显微镜通过使用激光作为光源,结合共聚焦技术来获取样品的高分辨率图像。在CLSM中,一个点光源(通常是激光)被聚焦到样品上,然后
    的头像 发表于 10-30 09:42 274次阅读

    共聚焦激光显微镜的使用注意事项

    共聚焦激光显微镜(Confocal Laser Scanning Microscopy, CLSM)是一种先进的显微成像技术,它通过使用激光作为光源,结合共聚焦技术,能够获得高分辨率的
    的头像 发表于 10-30 09:38 240次阅读

    光子显微成像激光调制解决方案

    图 1: 横向普克尔斯盒操作的简化表示。 通过调整施加的电场调制透过分析仪的透射率。 自从光子激光扫描荧光显微镜方面的开创性著作(登克等人,1990 年)于 1990 年发表以来,该
    的头像 发表于 09-23 06:28 162次阅读
    <b class='flag-5'>双</b><b class='flag-5'>光子</b><b class='flag-5'>显微</b>成像激光调制解决方案

    光束匀化在荧光成像平场照明中的应用

    荧光显微镜荧光显微镜属于光学显微镜家族,基于荧光的物理效应。利用了所谓的荧光染料的颜色特性,它们被特定波长的光
    的头像 发表于 09-12 08:05 242次阅读
    光束匀化在<b class='flag-5'>荧光</b>成像平场照明中的应用

    具有非常高数值孔径的反射显微镜系统

    摘要 在单分子显微镜成像应用中,定位精度是一个关键问题。由于在某一方向上的定位精度与图像在同一方向上的点扩散函数(point spread function, PSF)的宽度成正比,因此具有较高
    发表于 08-14 11:52

    共聚焦显微镜:成像原理、功能、分辨率与优势解析

    通过使用光源,显微镜能够对样品进行逐点扫描,并通过共轭孔径系统排除非焦平面的光,从而实现高分辨率的二维图像。此外,通过逐层扫描,共聚焦
    的头像 发表于 06-14 09:28 1453次阅读
    共聚焦<b class='flag-5'>显微镜</b>:成像原理、功能、分辨率与优势解析

    共聚焦、光学显微镜与测量显微镜的区分

    共聚焦显微镜是一种光学显微镜,也可以被称为测量显微镜。在它用于精确测量样品的尺寸、形状、表面粗糙度或其他物理特性时,能够提供非常精确的三维形貌图像
    发表于 05-14 10:43 3次下载

    显微成像与精密测量:共聚焦、光学显微镜与测量显微镜的区分

    共聚焦显微镜是一种光学显微镜,也可以被称为测量显微镜。能够进行二维和三维成像,是光学显微镜技术中较为先进的一种;因其高精度的三维成像能力,也
    的头像 发表于 05-11 11:38 810次阅读
    <b class='flag-5'>显微</b>成像与精密测量:共聚焦、光学<b class='flag-5'>显微镜</b>与测量<b class='flag-5'>显微镜</b>的区分

    用于材料领域的共聚焦显微镜可以看到什么?

    用于材料领域的共聚焦显微镜可以观察和分析材料的微观结构和特征,具体包括以下几个方面:1.金属材料的微观形貌:共聚焦显微镜可以观察金属材料的表面形貌,如晶粒结构、夹杂物分布、表面磨损坑等
    的头像 发表于 04-25 09:17 539次阅读
    用于材料领域的共聚焦<b class='flag-5'>显微镜</b><b class='flag-5'>可以</b>看到什么?

    共聚焦显微镜和激光共聚焦显微镜的区别详解

    两者在细节和特性上存在差异。1、原理上的差别:共聚焦显微镜基于共焦原理的显微镜技术,是一种使用了透镜系统将样品的不同焦深处的光聚焦到同一焦点上。这种聚焦方式能够减少背景噪音,提高图像的清晰度和对比度
    发表于 04-16 10:40 0次下载

    Argolight荧光显微镜校准载玻片简介

    昊量光电新推出法国ARGOLIGHT公司生产的耐用型荧光显微镜校准载玻片,用于荧光显微镜的标定和光路对准。独创的显微镜标定技术和光路对准得益于将亚纳米级三维/二维图案嵌入到载玻片的技术,且图案不会别
    的头像 发表于 03-05 08:18 423次阅读
    Argolight<b class='flag-5'>荧光显微镜</b>校准载玻片简介

    显微测量|共聚焦显微镜大倾角超清纳米三维显微成像

    用于材料科学领域的共聚焦显微镜,基于光学共轭共焦原理,其超高的空间分辨率和三维成像能力,提供了全新的视角和解决方案。工作原理共聚焦显微镜通过在样品的焦点处聚焦激光束,在样品表面进行快速点扫描并逐层
    发表于 02-20 09:07 1次下载

    显微镜的结构和使用方法 显微镜分为哪三个部分

    显微镜是一种用于放大观察微小物体的光学仪器。它通过对物体的光线进行放大和调节,使我们能够看到肉眼无法观察到的微小细节。显微镜广泛应用于生物学、医学、工程和材料科学等领域。为了更好地理解显微镜
    的头像 发表于 01-25 14:19 2565次阅读

    【应用案例】扫描近场光学显微镜SNOM

    场)光学显微镜理论分辨率的阿贝衍射极限,将光学分辨率提高了几十甚至上百倍。且纵向分辨率优于横向分辨率,能够得到清晰的三维图像,以及局域荧光、偏振、折射率、光吸收率、光谱等信息。 扫描近场光学
    的头像 发表于 01-09 14:19 796次阅读

    荧光显微镜细胞图像检测实战

    图像数据集是 U2OS 细胞高通量化学筛选的一部分,其中包含 200 种生物活性化合物的示例。治疗效果最初是使用细胞绘画测定(荧光显微镜)成像的。该数据集仅包括每种化合物的单个视场的 DNA 通道
    的头像 发表于 01-07 15:44 577次阅读
    <b class='flag-5'>荧光显微镜</b>细胞<b class='flag-5'>图像</b>检测实战