自从30年前引入监视控制和数据采集 (SCADA)以来,边缘计算是工业计算领域最重要的进步。
为了缓解带宽限制或固有延迟,以及提高系统的安全性和可靠性,计算资源(从网关到多功能设备再到计算机)都被安置在边缘,这就是边缘计算的概念。边缘的计算资源可以过滤或处理数据,需要做的只是在制造企业生产过程执行管理系统(MES系统)或企业系统与云之间传输数据。
尽管边缘计算是未来的工业控制技术,但是目前全球对边缘计算的认识也不尽相同,对于多数工程技术人员来说,边缘计算的概念还处于一知半解之中。
为此,美国CFE Media and Technology(CONTROL ENGINEERING杂志所在公司)最近联合Stratus(一家边缘计算设备供应商)对其全球读者进行了调查,发布了《2020边缘计算趋势报告》,调查内容涉及边缘计算的机遇、挑战以及对该技术的态度。
1 哪些新技术的应用需要边缘计算?
2部署边缘计算的难点
3 如何使用边缘计算的功能
4 边缘计算具有哪些功能
5边缘计算适合哪些应用程序
6如何选择边缘计算供应商
以NVIDIA Jetson Nano和 Jetson AGX Xavier 为核心板开发的蓝海大脑边缘计算单元,快速部署DNN/CNN/RNN/LSTM 等主流模型或其它训练好的神经网络模型;体验功能强大且高效的AI计算机视觉和高性能计算,在边缘设备中进行实时推理。体现在工业视觉识别中具有无需编程,降低集成难度;快速部署,极大缩短时间; 适应性强,快速迁移等优势。同时CPU和GPU高效协同,无序分拣拆垛码垛,具有缺陷定位、分割、分类、检测以及多维数据实战应用能力。
客户收益
1. 预测性维护、精确定时:通过装配线上使用工业物联网传感器,智能制造可以跟踪设备磨损的关键指标,如振动和温度。可在网络边缘提供实时数据分析,准确提示需要维护时间,尽可能减少停机时间及降低成本。
2. 更严格的质量管理:检测产品异常,避免影响产品质量。通过计算机视觉查看微小缺陷。加强质量控制,在整个生产过程中(从供应链到工厂车间)增加数据分析和情报。
3. 测量和管理机器: 具有开放和可互操作的特点,与现有设备集成收集和分析整个生产线的性能数据。通过使用工业物联网传感器和智能设备提高机械操作的可见度,提高智能工厂整体设备效率。
4. 安全传输、效率更高:支持工业物联网传感器、设备和可穿戴设备可在智能工厂出现危险时提醒工人,提高工人在严峻环境中工作表现 。从海上钻机到物流仓库,蓝海大脑的工业物联网解决方案可为联网工人提供信息,提高安全性和生产力。
责任编辑:gt
-
计算机
+关注
关注
19文章
7488浏览量
87849 -
数据采集
+关注
关注
38文章
6053浏览量
113619 -
边缘计算
+关注
关注
22文章
3084浏览量
48891
发布评论请先 登录
相关推荐
评论