0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

数据分析和数据挖掘的区别是什么?

人工智能与大数据技术 来源:木东居士 2020-09-24 13:41 次阅读

0x00 前言

问题

数据分析和数据挖掘的区别是什么?是否只能选一个方向深耕?

话题整理者:橘子,本科学的是金融和商业分析,目前是数据和运筹优化方向研究生,定位有点迷茫,日常在业务和技术的边缘反复横跳,希望能和大家共同学习和进步,一起用数据创造更多的价值。

问题描述

数据分析和数据挖掘是数据从业者非常关注的两个岗位。这两个岗位到底有哪些区别?常听人说数据分析偏业务、偏前台,而数据挖掘偏技术,偏后台。所以要早点选定一个方向进行深耕才行?

希望大家从这岗位设定的目的、高端人才的核心竞争力、技能树、职业发展路径和天花板、未来的趋势等角度谈一谈这两个岗位的区别。

0x01 讨论内容

讨论1

我觉得偏业务方向的数据分析师最好,数据挖掘做出来的成果期望不会很高的,在职业晋升方面懂业务的优势更大。

讨论2

其实都是大数据的分析工作,我们这边数据分析偏运营或者数据库的搭建清洗和业务分析,挖掘偏向于数据仓储 架构,长期业务分析,不知道和各位老哥的理解有什么不一样的。

讨论3

广义的数据分析本身就是包涵数据挖掘。

数据分析:注重分析过程,

数据挖掘:关注挖掘结果。

两者目标不一致,前者是基础,后者是升华。

讨论4

我以前以为数据分析只是业务excel sql boy,但是现在看在北京上海等地从事数分的,他们的工作也需要应用数据挖掘里面的模型,也会涉及特征提取,机器学习的内容;总之感觉从事数挖的偏技术更靠谱,数分这个岗位鱼龙混杂 感觉现在培训班把数分炒火了啥岗位都往数分转,但是这个岗位后面的深坑谁都说不准。

0x02 居士的解答

首先整体说一下两个岗位的现状,在大部分公司里面,数据挖掘和数据分析并没有特别明显的差别,甚至很多公司压根就没有数据挖掘这个通道。一般大家讨论数据挖掘和数据分析的区别的时候,更倾向于将数据挖掘定位为会用很多机器学习算法的岗位,数据分析定位为大部分时候都在写sql和玩excel,最多了解一些统计学的岗位,因此很多小伙伴在聊这个问题的时候也会认为:数据挖掘的技术含量更高,更有钱途。

然后,在各个厂子里面是怎么划分数据分析和数据挖掘呢,举几个例子给大家做参考:

厂A:数据挖掘和数据分析做同样的事情,没什么区别,写Sql,开发报表,跑数据~

厂B:数据挖掘做推荐、广告这类偏算法相关的岗位,数据分析做报表、数据周报、数据清洗的工作

厂C:没有数据挖掘岗位,只有数据分析岗和算法工程师岗,算法工程师偏向于算法的工程实现,比如推荐算法和广告算法的线上工程化。其他不管用不用得到机器学习算法,都是数据分析。

最后,居士从几个角度分享一下对这个问题的理解:

从技能要求的角度

数据分析:一般这些技能就够完成工作:Excel、Sql、Python

数据挖掘:在数据分析的基础上,可能会要求Java or C++这类语言来做线上工程化化的工作

从知识要求的角度

数据分析:统计学+少量的机器学习

数据分析:统计学+大量的机器学习

从实际工作的角度

再次说明一点,大部分公司的数据挖掘挖掘岗和数据分析岗可能没什么区别,下面只是一种划分方式。简单来讲,如果是理想一些的情况,数据挖掘是不需要做报表之类的工作的,然后会做更多线上工程化的工作。

数据分析:

初级:报表、提数、周报月报

中级:描述现象类数据分析报告

高级:解释现象类、预测类数据分析报告

再高一些:上限很高

数据挖掘:

初级:数据分析报告 or 线上数据流的开发

中级:线上算法工程化

高级:感觉方向稍微有点广,有的是深度学习领域做的很深,有的是广告或者推荐方向做的很深。

0xFF 附一组统计数据对比

上面的内容从道与术上分析了数据分析与数据挖掘的区别,现在我们通过近日北京地区两个岗位的招聘信息统计做一个验证。

数据来源:国内知名互联网招聘网站,分别搜索北京地区“数据分析”、“数据挖掘”所得的招聘信息结果,得到数据分析与数据挖掘招聘信息各400+条。

岗位名称

1

搜索“数据分析“相关岗位,绝大部分都是叫做“数据分析师”,38.16%直接叫做数据分析师,20%左右的“高级数据分析师”(或“资深数据分析师”、“数据分析专家“),其余还有大数据分析师、BI数据工程师、金融数据分析师等头衔。

而搜索“数据挖掘”相关岗位,绝大部分是”算法工程师“,21.41%直接叫做算法工程师,其余绝大部分也都是各个领域的算法工程师,数量排名靠前的有:4.47%机器学习算法工程师,3.29%NLP算法工程师,2.82%深度学习算法工程师,以及图像、推荐、计算机视觉等类别等。”数据挖掘工程师“头衔只占2.12%

公司规模

2

比较两个岗位所在公司的公司规模,发现两个岗位当前在中型公司中的需求量无明显差异,但在小型和大型公司中的需求有较大的差异。

数据分析岗当前在大公司的招聘需求较大,有42.75%的招聘信息来自2000人以上的大型公司;只有约13%等招聘信息来自于50人以下的小公司。

而数据挖掘相关岗位相反,在招的岗位中,来自于2000人以上大型公司的只有26.12%,而来自50人以下小型公司的却占了33%。

岗位技能要求

3

比较两个岗位的技能要求,可以发现两者所需的能力有比较大的区别:

数据分析相关岗位:业务、SQL、统计学、用户理解、数学、R、沟通、行业、Python、数据处理、增长思维等;

数据挖掘相关岗位:算法、机器学习、推荐、计算机、数学、模型、自然语言、开发、技术、数据挖掘等。

学历要求

4

85.51%的岗位对于数据分析的学历要求是本科,而数据挖掘的相关岗位中,55.04%的岗位要求本科,近40%要求硕士学历。数据挖掘比数据分析的学历要求更高。

不同工作年限的薪资下限

5

最后我们来比较一下两个岗位的薪资水平。为减少招聘信息中可能存在的薪资注水的影响,我们采用薪酬预估的下限进行计算,并用中位数表示各个工作年限月薪的平均水平。

可以看出,随着工作年限的积累,两个岗位的薪资都稳步提升,但数据挖掘相关岗位的薪酬普遍还是高于数据分析。

这个差距在不同年限也有区别,总体上数挖相关岗比数分薪酬高35%左右,但在应届毕业生和3-5年工作经验两个年限上拉开了56%的差距;在要求5-10年工作经验资深员工的岗位上,两岗薪资差距又明显缩小,体现了高端人才的价值。

10年以上工作年限的由于样本中缺乏数挖在这个年限下的招聘数据,暂时无法比较,但从数据分析最后一飞冲天的数据来看,数分岗位的上限真的很高。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据挖掘
    +关注

    关注

    1

    文章

    406

    浏览量

    24201
  • 数据分析
    +关注

    关注

    2

    文章

    1427

    浏览量

    34007

原文标题:数据分析和数据挖掘的区别是什么? (附真实招聘数据对比报告)

文章出处:【微信号:TheBigData1024,微信公众号:人工智能与大数据技术】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    LLM在数据分析中的作用

    随着大数据时代的到来,数据分析已经成为企业和组织决策的关键工具。数据科学家和分析师需要从海量数据中提取有价值的信息,以支持业务决策。在这个过
    的头像 发表于 11-19 15:35 109次阅读

    eda与传统数据分析区别

    EDA(Exploratory Data Analysis,探索性数据分析)与传统数据分析之间存在显著的差异。以下是两者的主要区别: 一、分析目的和方法论 EDA 目的 :EDA的主要
    的头像 发表于 11-13 10:52 198次阅读

    raid 在大数据分析中的应用

    RAID(Redundant Array of Independent Disks,独立磁盘冗余阵列)在大数据分析中的应用主要体现在提高存储系统的性能、可靠性和容量上。以下是RAID在大数据分析
    的头像 发表于 11-12 09:44 144次阅读

    云计算在大数据分析中的应用

    云计算在大数据分析中的应用广泛且深入,它为用户提供了存储、计算、分析和预测的强大能力。以下是对云计算在大数据分析中应用的介绍: 一、存储和处理海量数据 云计算提供了强大的存储和计算能力
    的头像 发表于 10-24 09:18 299次阅读

    使用AI大模型进行数据分析的技巧

    使用AI大模型进行数据分析的技巧涉及多个方面,以下是一些关键的步骤和注意事项: 一、明确任务目标和需求 在使用AI大模型之前,首先要明确数据分析的任务目标,这将直接影响模型的选择、数据收集和处理方式
    的头像 发表于 10-23 15:14 415次阅读

    IP 地址大数据分析如何进行网络优化?

    一、大数据分析在网络优化中的作用 1.流量分析数据分析可以对网络中的流量进行实时监测和分析,了解网络的使用情况和流量趋势。通过对流量数据
    的头像 发表于 10-09 15:32 176次阅读
    IP 地址大<b class='flag-5'>数据分析</b>如何进行网络优化?

    网络爬虫,Python和数据分析

    电子发烧友网站提供《网络爬虫,Python和数据分析.pdf》资料免费下载
    发表于 07-13 09:27 1次下载

    数据分析除了spss还有什么

    Sciences)是一款非常流行的统计分析软件,但除了SPSS之外,还有许多其他数据分析工具和方法。 引言 数据分析是一个跨学科的领域,涉及到统计学、计算机科学、数据
    的头像 发表于 07-05 15:01 535次阅读

    数据分析的工具有哪些

    数据分析是一个涉及收集、处理、分析和解释数据以得出有意义见解的过程。在这个过程中,使用正确的工具至关重要。以下是一些主要的数据分析工具,以及它们的功能和用途的介绍。 Excel Exc
    的头像 发表于 07-05 14:54 752次阅读

    数据分析有哪些分析方法

    数据分析是一种重要的技能,它可以帮助我们从大量的数据中提取有价值的信息,从而做出更明智的决策。在这篇文章中,我们将介绍数据分析的各种方法,包括描述性分析、诊断性
    的头像 发表于 07-05 14:51 523次阅读

    机器学习在数据分析中的应用

    随着大数据时代的到来,数据量的爆炸性增长对数据分析提出了更高的要求。机器学习作为一种强大的工具,通过训练模型从数据中学习规律,为企业和组织提供了更高效、更准确的
    的头像 发表于 07-02 11:22 543次阅读

    数据分析平台网站

    数据分析平台是一种用于处理和分析大规模数据集的系统,旨在从海量数据中提取有价值的信息和洞察。以下是大数据分析平台的主要功能和应用场景: 主
    的头像 发表于 06-28 15:46 581次阅读

    求助,关于AD采集到的数据分析问题

    问题描述:使用AD采集一个10Hz到2MHz的脉冲,脉冲底部可能大于零,由采集到的数据分析出该脉冲的上升时间,幅值和占空比。 备注:在分析的时候已经知道脉冲的频率,精度为2X10^-5. 在分析
    发表于 05-09 07:40

    态势数据分析系统软件

    处理、分析挖掘态势数据的工具。它结合了数据集成、地图制作、数据分析挖掘以及可视化展示等多种功
    的头像 发表于 04-22 11:36 401次阅读

    Get职场新知识:做分析,用大数据分析工具

    为什么企业每天累积那么多的数据,也做数据分析,但最后决策还是靠经验?很大程度上是因为这些数据都被以不同的指标和存储方式放在各自的系统中,这就导致了数据
    发表于 12-05 09:36