0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

量子力学干涉效应如何使实验者能够通过吸收光谱中的共振

济南宇航汽车电子 来源:济南宇航汽车电子 作者:济南宇航汽车电子 2020-09-24 16:55 次阅读

卢森堡大学的物理学家与国际合作者现在在国际知名《物理评论快报》上发表了一项研究成果。研究展示了量子力学干涉效应如何使实验者能够通过吸收光谱中的共振,更好地研究量子液体中捕获的粒子性质。把一块石头扔进安静的湖里,会在水面上产生涟漪。把两块石头扔进湖里会产生两个这样的面波,它们可以形成一个有趣的干涉模式。产生这些波浪需要能量,能量从石头转移到水中,最终导致石头经历摩擦力。

在经典物理学中,这是一个非常古老的问题,但它的量子力学对应物仍然具有令人惊讶的地方。量子力学等价物由两个带电离子组成,这两个离子浸泡在由较轻的中性原子形成的“液体”中。在实验上,这样的系统几年前就已经实现了,方法是结合离子阱和磁光阱,离子阱保持带电离子的位置,磁光阱允许将中性原子带入被称为玻色-爱因斯坦凝聚(BEC)的集体量子态。

由于这对离子是带电的,所以可以使用电场来操纵它们。特别是,从离子到BEC的能量转移,以及由此产生的摩擦力,可以通过研究电磁场的吸收来测量。卢森堡大学托马斯·施密特(Thomas Schmidt)研究组的物理学家,以及巴黎理工学院(Institut Polytechnic De Paris)和爱荷华州立大学(Iowa State University)的研究人员发现:

如果延长玻色-爱因斯坦凝聚态,并考虑到两个离子和原子的量子力学性质,就会出现新的现象。在这种情况下,离子发射的波和外加电场之间的干扰,导致吸收光谱中的共振和反共振特征。在共振频率下,离子对外加电场的反应非常强烈,而在反共振时,根本不能从外加电场中吸收能量。

这些共振和反共振是量子干扰的结果,玻色-爱因斯坦凝聚态的拉长性质,以及离子和原子之间的强库仑力。因此,它们可以作为一种有用的实验工具,用于进一步表征玻色-爱因斯坦凝聚态的性质,例如它们的声速或它们如何与嵌入的离子相互作用。研究了一维相互作用的量子液体,其中含有一对移动杂质引起的后向散射。研究确定了由液体介导两种杂质之间的有效延迟相互作用。

研究证明,对于强后向散射,这种相互作用在杂质对的有限频率迁移率中引起共振和反共振。在反共振时,即使在(小)外力的驱动下,两种杂质也保持静止。在共振时,它们的同步运动同相跟随外部驱动,并达到最大振幅。在通过杂质的量子隧穿中使用微扰重整化群分析,研究了模型的有效性范围。预测在限制在一维超冷原子气体上的实验中,这些机械反共振是可以观察到的。

研究/来自:卢森堡大学

参考期刊《物理评论快报》

DOI: 10.1103/PhysRevLett.123.075302

责任编辑:xj

原文标题:量子世界就是好玩!在一维量子液体波上冲浪,从未有过的乐趣!

文章出处:【微信公众号:济南宇航汽车电子】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 量子
    +关注

    关注

    0

    文章

    478

    浏览量

    25482
  • 光谱
    +关注

    关注

    4

    文章

    797

    浏览量

    35087
  • 干涉
    +关注

    关注

    0

    文章

    11

    浏览量

    9213

原文标题:量子世界就是好玩!在一维量子液体波上冲浪,从未有过的乐趣!

文章出处:【微信号:JN-YUHANG,微信公众号:济南宇航汽车电子】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    光电效应在半导体的应用

    光电效应最早由赫兹在1887年发现,后由爱因斯坦在1905年提出理论解释,并因此获得了诺贝尔物理学奖。光电效应是指当光照射到金属表面时,金属会释放出电子。这一现象可以用量子力学来解释,即光子的能量被金属
    的头像 发表于 11-25 13:48 159次阅读

    AM18x EVM或实验者套件入门

    电子发烧友网站提供《AM18x EVM或实验者套件入门.pdf》资料免费下载
    发表于 10-14 11:23 0次下载
    AM18x EVM或<b class='flag-5'>实验者</b>套件入门

    多参数光谱水质探头:环保领域的创新利器

    在现代环境保护和水质监测,准确、实时的数据采集是至关重要的。为了满足这一需求,多参数光谱水质探头应运而生。这是一款专门针对环境环保领域开发的多参数水质测量光谱吸收集成模块,
    的头像 发表于 09-12 12:00 154次阅读

    衬底量子效应简介

    法线方向上的运动要通过量子力学来分析。在垂直运动方向上,载流子将具有离散本征能级的二维电子气,所以对纳米
    的头像 发表于 08-07 11:40 525次阅读
    衬底<b class='flag-5'>量子</b><b class='flag-5'>效应</b>简介

    手持光谱仪怎么看测试结果

    基于光谱学,即物质对不同波长的光的吸收、发射或散射特性。当光通过物质时,某些特定波长的光会被吸收,形成特征吸收光谱
    的头像 发表于 07-18 09:22 755次阅读

    【《计算》阅读体验】量子计算

    测量前可能处于叠加态,这是量子力学既令人难以理解又威力无穷的地方。由于量子具有波粒二象性,因此可以把量子描述为一个波函数,测量前处于看加态的波函数,测量后将坍缩为本征态。 量子的纠缠性
    发表于 07-13 22:15

    通过结合发射和吸收光谱法比较激光等离子体的激发温度

    的方法,通过结合发射光谱吸收光谱,精确比较和测量激光等离子体的激发温度。 传统的发射光谱法和吸收光谱法各有其优点和局限。发射
    的头像 发表于 06-12 06:36 312次阅读

    饱和吸收光谱的新型量子光学磁力计,确保核磁共振成像质量

    核磁共振成像(MRI)扫描仪可以提供质量卓越的3D图像,但用于创建这些图像的强磁场存在扰动,可能会在扫描引入误差和干扰。
    的头像 发表于 05-28 09:19 1357次阅读
    饱和<b class='flag-5'>吸收光谱</b>的新型<b class='flag-5'>量子</b>光学磁力计,确保核磁<b class='flag-5'>共振</b>成像质量

    量子

    可以模拟原子和分子之间的相互作用,帮助科学家设计新材料、药物,甚至加速新材料的发现过程。这将有助于推动科学研究的进展,加快新技术的开发。 总的来说,量子计算机的梦想是通过利用量子力学的奇特性质,解决传统
    发表于 03-13 18:18

    量子计算机重构未来 | 阅读体验】+ 了解量子叠加原理

    特色很新颖,但依旧没有理解叠加原理。神奇的量子世界充满了未知,继续探索吧,小白! 附: 什么是布洛赫球? 布洛赫球(Bloch sphere)是量子力学的一个重要概念,用于描述量子
    发表于 03-13 17:19

    量子计算机重构未来 | 阅读体验】+机器学习的终点是量子计算?

    量子力学,不过最近抽空正在脑补,薛定谔方程,费曼的路径积分,还有矩阵力学,等等,这块涉及的数学有点多,李群和李代数等,拓扑流形,复线性代数等。。 不说了,说起来都是痛。 为了能够更快的熟悉这些内容
    发表于 03-10 16:33

    大气化学的奥秘:利用FERGIE进行瞬态吸收光谱研究

    )、过氧根(HO2)以及克里奇中间体(Criegee intermediates)等的化学反应过程,斯通博士尤其感兴趣。为了完成相关检测和实验,他不仅需要在实验室内做研究,也需要进行野外测量以及数值模拟。 图1:接入FERGIE系统的
    的头像 发表于 03-05 06:28 301次阅读
    大气化学的奥秘:利用FERGIE进行瞬态<b class='flag-5'>吸收光谱</b>研究

    量子力学三大定律公式

    量子力学是描述微观世界的物理理论,为了描述微观粒子的行为,量子力学提出了三个重要的定律。这三个定律是量子力学的基石,构建了整个理论体系。本文将详细介绍量子力学的三大定律:波函数定律、不
    的头像 发表于 01-15 09:44 3814次阅读

    光电效应的基本原理是什么 光电效应的发展历程

    光电效应是一种物理现象,指的是当光子射到金属表面时,金属的电子受到能量激发而从金属表面逸出的过程。光电效应的基本原理可以用经典的波动理论和量子力学的粒子理论来解释。
    发表于 01-10 14:49 6663次阅读

    量子力学和测量关系研究国际会议准备会议在广州举行

    12月19-21日中关村检验检测认证产业技术联盟国际专委会在广州组织召开了“量子力学和测量关系研究国际会议”准备会议。来自全国14个国防和各省市计量技术机构6个测量制造企业参加本次会议。“量子力学与计量关系研究”项目于2022年经联盟
    的头像 发表于 12-22 08:24 583次阅读
    <b class='flag-5'>量子力学</b>和测量关系研究国际会议准备会议在广州举行