0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

ElasticSearch的必备知识:从入门、索引管理到映射详解

人工智能与大数据技术 来源:人工智能与大数据技术 作者:人工智能与大数据 2020-09-25 10:44 次阅读

本文介绍了ElasticSearch的必备知识:从入门、索引管理到映射详解。

一、快速入门

1.查看集群的健康状况
http://localhost:9200/_cat

http://localhost:9200/_cat/health?v

说明:v是用来要求在结果中返回表头

状态值说明

Green- everything is good (cluster is fully functional),即最佳状态
Yellow- all data is available but some replicas are not yet allocated (cluster is fully functional),即数据和集群可用,但是集群的备份有的是坏的
Red- some data is not available for whatever reason (cluster is partially functional),即数据和集群都不可用

查看集群的节点
http://localhost:9200/_cat/?v


2. 查看所有索引
http://localhost:9200/_cat/indices?v

3. 创建一个索引
创建一个名为 customer 的索引。pretty要求返回一个漂亮的json 结果

PUT /customer?pretty

再查看一下所有索引
http://localhost:9200/_cat/indices?v


GET /_cat/indices?v


4. 索引一个文档到customer索引中

curl -X PUT "localhost:9200/customer/_doc/1?pretty" -H 'Content-Type: application/json' -d'{ "name": "John Doe"}'5. 从customer索引中获取指定id的文档

curl -X GET "localhost:9200/customer/_doc/1?pretty"6. 查询所有文档

GET /customer/_search?q=*&sort=name:asc&pretty JSON格式方式

GET /customer/_search{ "query": { "match_all": {} }, "sort": [ {"name": "asc" } ]}

二、索引管理

1. 创建索引
创建一个名为twitter的索引,设置索引的分片数为3,备份数为2。注意:在ES中创建一个索引类似于在数据库中建立一个数据库(ES6.0之后类似于创建一个表)

PUT twitter{ "settings" : { "index" : { "number_of_shards" : 3, "number_of_replicas" : 2 } }} 说明: 默认的分片数是5到1024 默认的备份数是1 索引的名称必须是小写的,不可重名 创建结果:

创建的命令还可以简写为

PUT twitter{ "settings" : { "number_of_shards" : 3, "number_of_replicas" : 2 }}2. 创建mapping映射注意:在ES中创建一个mapping映射类似于在数据库中定义表结构,即表里面有哪些字段、字段是什么类型、字段的默认值等;也类似于solr里面的模式schema的定义

PUT twitter{ "settings" : { "index" : { "number_of_shards" : 3, "number_of_replicas":2 } }, "mappings" : { "type1" : { "properties" : { "field1" : { "type" : "text" } } } }}3. 创建索引时加入别名定义

PUT twitter{ "aliases" : { "alias_1" : {}, "alias_2" : { "filter" : { "term" : {"user" : "kimchy" } }, "routing" : "kimchy" } }}4. 创建索引时返回的结果说明

5. Get Index 查看索引的定义信息GET /twitter,可以一次获取多个索引(以逗号间隔) 获取所有索引 _all 或 用通配符*

GET /twitter/_settings

GET /twitter/_mapping

6. 删除索引

DELETE /twitter 说明: 可以一次删除多个索引(以逗号间隔) 删除所有索引 _all 或 通配符 *7. 判断索引是否存在

HEAD twitter

HTTP status code 表示结果 404 不存在 , 200 存在8. 修改索引的settings信息

索引的设置信息分为静态信息和动态信息两部分。静态信息不可更改,如索引的分片数。动态信息可以修改。 REST 访问端点: /_settings 更新所有索引的。 {index}/_settings 更新一个或多个索引的settings。 详细的设置项请参考:https://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules.html#index-modules-settings9. 修改备份数

PUT /twitter/_settings{ "index" : { "number_of_replicas" : 2 }}


10. 设置回默认值,用null

PUT /twitter/_settings{ "index" : { "refresh_interval" : null }}


11. 设置索引的读写

index.blocks.read_only:设为true,则索引以及索引的元数据只可读index.blocks.read_only_allow_delete:设为true,只读时允许删除。index.blocks.read:设为true,则不可读。index.blocks.write:设为true,则不可写。index.blocks.metadata:设为true,则索引元数据不可读写。


12. 索引模板

在创建索引时,为每个索引写定义信息可能是一件繁琐的事情,ES提供了索引模板功能,让你可以定义一个索引模板,模板中定义好settings、mapping、以及一个模式定义来匹配创建的索引。

注意:模板只在索引创建时被参考,修改模板不会影响已创建的索引

12.1 新增/修改名为tempae_1的模板,匹配名称为te* 或 bar*的索引创建:

PUT _template/template_1{ "index_patterns": ["te*", "bar*"], "settings": { "number_of_shards": 1 }, "mappings": { "type1": { "_source": { "enabled": false }, "properties": { "host_name": { "type": "keyword" }, "created_at": { "type": "date", "format": "EEE MMM dd HHss Z YYYY" } } } }}

12.2 查看索引模板

GET/_template/template_1GET/_template/temp*GET/_template/template_1,template_2GET /_template


12.3 删除模板

DELETE /_template/template_1


13. Open/Close Index 打开/关闭索引

POST /my_index/_closePOST /my_index/_open

说明:

关闭的索引不能进行读写操作,几乎不占集群开销。
关闭的索引可以打开,打开走的是正常的恢复流程。

14. Shrink Index 收缩索引

索引的分片数是不可更改的,如要减少分片数可以通过收缩方式收缩为一个新的索引。新索引的分片数必须是原分片数的因子值,如原分片数是8,则新索引的分片数可以为4、2、1 。

什么时候需要收缩索引呢?

最初创建索引的时候分片数设置得太大,后面发现用不了那么多分片,这个时候就需要收缩了

收缩的流程:

先把所有主分片都转移到一台主机上;
在这台主机上创建一个新索引,分片数较小,其他设置和原索引一致;
把原索引的所有分片,复制(或硬链接)到新索引的目录下;
对新索引进行打开操作恢复分片数据;
(可选)重新把新索引的分片均衡到其他节点上。

收缩前的准备工作:

将原索引设置为只读;
将原索引各分片的一个副本重分配到同一个节点上,并且要是健康绿色状态。

PUT /my_source_index/_settings{ "settings": { "index.routing.allocation.require._name": "shrink_node_name", "index.blocks.write": true }}


进行收缩:

POST my_source_index/_shrink/my_target_index{ "settings": { "index.number_of_replicas": 1, "index.number_of_shards": 1, "index.codec": "best_compression" }}


监控收缩过程:

GET _cat/recovery?vGET _cluster/health


15. Split Index 拆分索引

当索引的分片容量过大时,可以通过拆分操作将索引拆分为一个倍数分片数的新索引。能拆分为几倍由创建索引时指定的index.number_of_routing_shards 路由分片数决定。这个路由分片数决定了根据一致性hash路由文档到分片的散列空间。

如index.number_of_routing_shards = 30 ,指定的分片数是5,则可按如下倍数方式进行拆分:

5 → 10 → 30 (split by 2, then by 3)5 → 15 → 30 (split by 3, then by 2)5 → 30 (split by 6)


为什么需要拆分索引?

当最初设置的索引的分片数不够用时就需要拆分索引了,和压缩索引相反

注意:只有在创建时指定了index.number_of_routing_shards 的索引才可以进行拆分,ES7开始将不再有这个限制。

和solr的区别是,solr是对一个分片进行拆分,es中是整个索引进行拆分。

拆分步骤:

准备一个索引来做拆分:

PUT my_source_index{ "settings": { "index.number_of_shards" : 1, "index.number_of_routing_shards" : 2 }}


先设置索引只读:

PUT /my_source_index/_settings{ "settings": { "index.blocks.write": true }}


做拆分:

POST my_source_index/_split/my_target_index{ "settings": { "index.number_of_shards": 2 }}


监控拆分过程:

GET _cat/recovery?vGET _cluster/health


16. Rollover Index 别名滚动指向新创建的索引

对于有时效性的索引数据,如日志,过一定时间后,老的索引数据就没有用了。我们可以像数据库中根据时间创建表来存放不同时段的数据一样,在ES中也可用建多个索引的方式来分开存放不同时段的数据。比数据库中更方便的是ES中可以通过别名滚动指向最新的索引的方式,让你通过别名来操作时总是操作的最新的索引。

ES的rollover index API 让我们可以根据满足指定的条件(时间、文档数量、索引大小)创建新的索引,并把别名滚动指向新的索引。

注意:这时的别名只能是一个索引的别名。

Rollover Index 示例:

创建一个名字为logs-0000001 、别名为logs_write 的索引:

PUT /logs-000001{ "aliases": { "logs_write": {} }}


添加1000个文档到索引logs-000001,然后设置别名滚动的条件

POST /logs_write/_rollover{ "conditions": { "max_age": "7d", "max_docs": 1000, "max_size": "5gb" }}


说明:

如果别名logs_write指向的索引是7天前(含)创建的或索引的文档数>=1000或索引的大小>= 5gb,则会创建一个新索引 logs-000002,并把别名logs_writer指向新创建的logs-000002索引

Rollover Index 新建索引的命名规则:

如果索引的名称是-数字结尾,如logs-000001,则新建索引的名称也会是这个模式,数值增1。

如果索引的名称不是-数值结尾,则在请求rollover api时需指定新索引的名称

POST /my_alias/_rollover/my_new_index_name{ "conditions": { "max_age": "7d", "max_docs": 1000, "max_size": "5gb" }}


在名称中使用Date math(时间表达式)

如果你希望生成的索引名称中带有日期,如logstash-2016.02.03-1 ,则可以在创建索引时采用时间表达式来命名:

# PUT / with URI encoding:PUT /%3Clogs-%7Bnow%2Fd%7D-1%3E{ "aliases": { "logs_write": {} }}PUT logs_write/_doc/1{ "message": "a dummy log"}POSTlogs_write/_refresh#WaitforadaytopassPOST /logs_write/_rollover{ "conditions": { "max_docs": "1" }}


Rollover时可对新的索引作定义:

PUT /logs-000001{ "aliases": { "logs_write": {} }}POST /logs_write/_rollover{ "conditions" : { "max_age": "7d", "max_docs": 1000, "max_size": "5gb" }, "settings": { "index.number_of_shards": 2 }}


Dry run 实际操作前先测试是否达到条件:

POST /logs_write/_rollover?dry_run{ "conditions" : { "max_age": "7d", "max_docs": 1000, "max_size": "5gb" }}


说明:

测试不会创建索引,只是检测条件是否满足

注意:rollover是你请求它才会进行操作,并不是自动在后台进行的。你可以周期性地去请求它。

17. 索引监控

17.1 查看索引状态信息

官网链接:

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-stats.html

查看所有的索引状态:

GET /_stats

查看指定索引的状态信息:

GET /index1,index2/_stats

17.2 查看索引段信息

官网链接:

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-segments.html

GET/test/_segmentsGET/index1,index2/_segmentsGET /_segments


17.3 查看索引恢复信息

官网链接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-recovery.html

GET index1,index2/_recovery?human

GET /_recovery?human

17.4 查看索引分片的存储信息

官网链接:

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-shards-stores.html

# return information of only index testGET/test/_shard_stores# return information of only test1 and test2 indicesGET/test1,test2/_shard_stores# return information of all indicesGET /_shard_stores GET /_shard_stores?status=green


18. 索引状态管理

18.1 Clear Cache 清理缓存

POST /twitter/_cache/clear

默认会清理所有缓存,可指定清理query, fielddata or request 缓存

POST /kimchy,elasticsearch/_cache/clearPOST/_cache/clear


18.2 Refresh,重新打开读取索引

POST/kimchy,elasticsearch/_refreshPOST /_refresh


18.3 Flush,将缓存在内存中的索引数据刷新到持久存储中

POST twitter/_flush


18.4 Force merge 强制段合并

POST /kimchy/_forcemerge?only_expunge_deletes=false&max_num_segments=100&flush=true


可选参数说明:

max_num_segments 合并为几个段,默认1
only_expunge_deletes 是否只合并含有删除文档的段,默认false
flush 合并后是否刷新,默认true

POST/kimchy,elasticsearch/_forcemergePOST /_forcemerge

三、映射详解

1. Mapping 映射是什么

映射定义索引中有什么字段、字段的类型等结构信息。相当于数据库中表结构定义,或 solr中的schema。因为lucene索引文档时需要知道该如何来索引存储文档的字段。
ES中支持手动定义映射,动态映射两种方式。

1.1. 为索引创建mapping

PUTtest{ "mappings" : { "type1" : { "properties" : { "field1" : { "type" : "text" } } } }}


说明:映射定义后续可以修改

2. 映射类别 Mapping type 废除说明

ES最先的设计是用索引类比关系型数据库的数据库,用mapping type 来类比表,一个索引中可以包含多个映射类别。这个类比存在一个严重的问题,就是当多个mapping type中存在同名字段时(特别是同名字段还是不同类型的),在一个索引中不好处理,因为搜索引擎中只有 索引-文档的结构,不同映射类别的数据都是一个一个的文档(只是包含的字段不一样而已)

从6.0.0开始限定仅包含一个映射类别定义( "index.mapping.single_type": true ),兼容5.x中的多映射类别。从7.0开始将移除映射类别。
为了与未来的规划匹配,请现在将这个唯一的映射类别名定义为“_doc”,因为索引的请求地址将规范为:PUT {index}/_doc/{id} and POST {index}/_doc

Mapping 映射示例:

PUT twitter{ "mappings": { "_doc": { "properties": { "type": { "type": "keyword" }, "name": { "type": "text" }, "user_name": { "type": "keyword" }, "email": { "type": "keyword" }, "content": { "type": "text" }, "tweeted_at": { "type": "date" } } } }}

多映射类别数据转储到独立的索引中:

ES 提供了reindex API 来做这个事


3. 字段类型 datatypes

字段类型定义了该如何索引存储字段值。ES中提供了丰富的字段类型定义,请查看官网链接详细了解每种类型的特点:

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-types.html

3.1Core Datatypes 核心类型

string text and keywordNumeric datatypes long, integer, short, byte, double, float, half_float, scaled_floatDate datatype dateBoolean datatype booleanBinary datatype binaryRange datatypes 范围 integer_range, float_range, long_range, double_range, date_range

3.2Complex datatypes 复合类型

Array datatype 数组就是多值,不需要专门的类型Object datatype object :表示值为一个JSON 对象Nested datatype nested:for arrays of JSON objects(表示值为JSON对象数组 )

3.3Geodatatypes地理数据类型

Geo-point datatype geo_point:for lat/lon points (经纬坐标点)Geo-Shape datatype geo_shape:for complex shapes like polygons (形状表示)


3.4Specialised datatypes 特别的类型

IP datatype ip:for IPv4 and IPv6 addressesCompletion datatype completion:to provide auto-complete suggestionsToken count datatype token_count:to count the number of tokens in a stringmapper-murmur3 murmur3:to compute hashes of values at index-time and store them in the indexPercolator type Accepts queries from the query-dsljoin datatype Defines parent/child relation for documents within the same index


4. 字段定义属性介绍
字段的type (Datatype)定义了如何索引存储字段值,还有一些属性可以让我们根据需要来覆盖默认的值或进行特别定义。请参考官网介绍详细了解:https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-params.html

analyzer 指定分词器 normalizer 指定标准化器 boost 指定权重值 coerce 强制类型转换 copy_to 值复制给另一字段 doc_values 是否存储docValues dynamic enabled 字段是否可用 fielddata eager_global_ordinals format 指定时间值的格式 ignore_above ignore_malformed index_options index fields norms null_value position_increment_gap properties search_analyzer similarity store term_vector


字段定义属性—示例

PUT my_index{ "mappings": { "_doc": { "properties": { "date": { "type": "date", "format": "yyyy-MM-dd HHss||yyyy-MM-dd||epoch_millis" } } } }}


5. Multi Field 多重字段
当我们需要对一个字段进行多种不同方式的索引时,可以使用fields多重字段定义。如一个字符串字段即需要进行text分词索引,也需要进行keyword 关键字索引来支持排序、聚合;或需要用不同的分词器进行分词索引。

示例:

定义多重字段:

说明:raw是一个多重版本名(自定义)

PUT my_index{ "mappings": { "_doc": { "properties": { "city": { "type": "text", "fields": { "raw": { "type": "keyword" } } } } } }}


往多重字段里面添加文档

PUT my_index/_doc/1{ "city": "New York"} PUT my_index/_doc/2{ "city": "York"}


获取多重字段的值:

GET my_index/_search{ "query": { "match": { "city": "york" } }, "sort": { "city.raw": "asc" }, "aggs": { "Cities": { "terms": { "field": "city.raw" } } }}

6. 元字段

官网链接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-fields.html

元字段是ES中定义的文档字段,有以下几类:


7. 动态映射
动态映射:ES中提供的重要特性,让我们可以快速使用ES,而不需要先创建索引、定义映射。如我们直接向ES提交文档进行索引:

PUT data/_doc/1{ "count": 5 }
ES将自动为我们创建data索引、_doc 映射、类型为 long 的字段 count

索引文档时,当有新字段时, ES将根据我们字段的json的数据类型为我们自动加人字段定义到mapping中。

7.1字段动态映射规则

7.2 Date detection 时间侦测


所谓时间侦测是指我们往ES里面插入数据的时候会去自动检测我们的数据是不是日期格式的,是的话就会给我们自动转为设置的格式

date_detection 默认是开启的,默认的格式dynamic_date_formats为:

[ "strict_date_optional_time","yyyy/MM/dd HHss Z||yyyy/MM/dd Z"]PUT my_index/_doc/1{ "create_date": "2015/09/02"} GET my_index/_mapping
自定义时间格式:

PUT my_index{ "mappings": { "_doc": { "dynamic_date_formats": ["MM/dd/yyyy"] } }}
禁用时间侦测:

PUT my_index{ "mappings": { "_doc": { "date_detection": false } }}
7.3 Numeric detection 数值侦测

开启数值侦测(默认是禁用的)

PUTmy_index{ "mappings": { "_doc": { "numeric_detection": true } }}PUT my_index/_doc/1{ "my_float": "1.0", "my_integer": "1"}

责任编辑:xj

原文标题:ElasticSearch 最全详细使用教程

文章出处:【微信公众号:人工智能与大数据技术】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 映射
    +关注

    关注

    0

    文章

    47

    浏览量

    15850
  • Elasticsearch
    +关注

    关注

    0

    文章

    29

    浏览量

    2843

原文标题:ElasticSearch 最全详细使用教程

文章出处:【微信号:TheBigData1024,微信公众号:人工智能与大数据技术】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    在华为云上通过 Docker 容器部署 Elasticsearch 并进行性能评测

      2.2 安装 Docker   2.3 启动 Docker   3. 使用Docker部署Elasticsearch   3.1 拉取Elasticsearch镜像   3.2 启动
    的头像 发表于 01-13 13:36 12次阅读
    在华为云上通过 Docker 容器部署 <b class='flag-5'>Elasticsearch</b> 并进行性能评测

    创建唯一索引的SQL命令和技巧

    在创建唯一索引时,以下是一些SQL命令和技巧,可以帮助优化性能: 使用合适的索引类型:对于需要保证唯一性的列,使用UNIQUE索引来避免重复数据的插入。 这可以确保列中的值是唯一的,同时提高查询效率
    的头像 发表于 01-09 15:21 42次阅读

    利智方:驱动企业知识管理与AI创新加速的平台

    企业和社会的知识积累与传承。 采集、存储,到加工管理,到共享优化,再到使用与更新,包括了无用知识的淘汰和新知识的创新。“归藏”、“连山”、
    的头像 发表于 12-30 11:07 298次阅读

    Elasticsearch 再次开源

    Elasticsearch 和 Kibana 又可以被称为开源了。很难表达这句话让我有多高兴。我激动得简直要跳起来了。我们 Elastic 的所有人都是如此。开源是我的 DNA。这也是Elastic的DNA。能够再次将 Elasticsearch 称为开源,我感到非常高兴
    的头像 发表于 11-13 12:14 160次阅读
    <b class='flag-5'>Elasticsearch</b> 再次开源

    CPK为什么要大于1.33?一文详解CPK计算

    共读好书CPK是每个质量人必备技能,它是衡量生产过程能力高低的数据,对质量管理、质量提升非常重要。‍欢迎扫码添加小编微信扫码加入知识星球,领取公众号资料
    的头像 发表于 11-01 11:08 424次阅读

    品质管理基础知识

    品质管理基础知识
    的头像 发表于 11-01 11:08 383次阅读
    品质<b class='flag-5'>管理</b>基础<b class='flag-5'>知识</b>

    《机智云入门必备》手把手教你烧录GAgent固件

    本文《机智云入门必备》将详细讲解GAgent固件的烧录过程,基础设置到实际操作,将一步步带你完成每一个环节,确保你的设备顺利连接机智云平台,实现智能控制和自动化管理。基本介绍esp8
    的头像 发表于 09-12 08:04 413次阅读
    《机智云<b class='flag-5'>入门</b><b class='flag-5'>必备</b>》手把手教你烧录GAgent固件

    MATLAB中的矩阵索引

    对矩阵进行索引矩阵中选择或修改部分元素的一种方式。MATLAB 有几种索引样式,它们不仅功能强大、灵活,而且可读性强、表现力强。矩阵是 MATLAB 用来组织和分析数据的一个核心组件,索引
    的头像 发表于 09-05 09:28 496次阅读
    MATLAB中的矩阵<b class='flag-5'>索引</b>

    新书推荐 | TSMaster开发入门到精通

    书名:TSMaster开发入门到精通书号:9787302667193作者:杨金升刘矗刘功申定价:99.80元《CANoe开发入门到精通》作者又一力作!本书旨在帮助广大汽车工业领域的
    的头像 发表于 08-30 12:37 588次阅读
    新书推荐 | TSMaster开发<b class='flag-5'>从</b><b class='flag-5'>入门</b>到精通

    统一日志数据流图

    统一日志数据流图 日志系统数据流图 系统进行日志收集的过程可以分为三个环节: (1)日志收集和导入ElasticSearch (2)ElasticSearch进行索引等处理 (3)可视化操作,查询等
    的头像 发表于 08-21 15:00 328次阅读
    统一日志数据流图

    时间同步协议详解理到应用的全方位解析

      作者介绍 随着信息技术的飞速发展,时间同步技术在通信、导航、电力等多个领域发挥着越来越重要的作用。日常生活到高精尖的科学实验,精确的时间同步都是确保系统正常运行和任务成功完成的关键因素。本文
    的头像 发表于 07-05 09:57 532次阅读
    时间同步协议<b class='flag-5'>详解</b>:<b class='flag-5'>从</b>原<b class='flag-5'>理到</b>应用的全方位解析

    路由器映射是什么意思?路由器端口映射怎么设置?

    有一个Web服务器在您的家庭网络中运行,您可以使用路由器映射将其公开到互联网上。这样,任何人都可以互联网上访问该Web服务器。 路由器端口映射的好处有: 1. 隐藏原地址端口。或者说改变访问地址端口。 2. 本地发布外网,外网
    的头像 发表于 05-10 13:42 1407次阅读

    传感器选型攻略:理到应用

    传感器、姿态传感器和气体传感器。 本文将全面解析传感器类别的区分与选型攻略,理到应用,为您提供一份全方位的参考指南。 首先,温度传感器是用来测量温度的,广泛应用于工业控制、气象观测、医疗卫生等领域。 常见的温度传感器
    的头像 发表于 02-02 11:21 793次阅读

    拆解mmap内存映射的本质!

    mmap 内存映射里所谓的内存其实指的是虚拟内存,在调用 mmap 进行匿名映射的时候(比如进行堆内存的分配),是将进程虚拟内存空间中的某一段虚拟内存区域与物理内存中的匿名内存页进行映射,当调用
    的头像 发表于 01-24 14:30 1834次阅读
    拆解mmap内存<b class='flag-5'>映射</b>的本质!

    解析压敏电阻MOV:基础原理到应用?

    解析压敏电阻MOV:基础原理到应用?|深圳比创达电子EMC
    的头像 发表于 01-24 10:47 926次阅读
    解析压敏电阻MOV:<b class='flag-5'>从</b>基础原<b class='flag-5'>理到</b>应用?